Найти суперпозицию функции. «Учебник по дискретной математике. Суперпозиция функций. Замыкание набора функции.Замкнутые классы функций. Полные наборы. Базисы. Свойства отношения равномощности

Суперпозиция функций

Суперпозицией функций f1, …, fm называется функция f, полученная с помощью подстановок этих функций друг в друга и переименования переменных.

Пусть имеются два отображения и, причем непустое множество. Тогда супер позицией или композицией функций и называется функция, определенная равенством для всякого.

Областью определения суперпозиции является множество.

Функция называется внешней, а -внутренней функцией для суперпозиции.

Функции, представленные в виде композиции "более простых", называются сложными функциями.

Примерами использования суперпозиции являются: решение системы уравнений методом подстановки; нахождение производной от функции; нахождение значения алгебраического выражения с помощью подстановки в него значения заданных переменных.

Рекурсивные функции

Рекурсией называется такой способ задания функции, при котором значения определяемой функции для произвольных значений аргументов выражаются известным образом через значения определяемой функции для меньших значений аргументов.

Примитивно рекурсивная функция

Определение понятия примитивно рекурсивной функции является индуктивным. Оно состоит из указания класса базовых примитивно рекурсивных функций и двух операторов (суперпозиции и примитивной рекурсии), позволяющих строить новые примитивно рекурсивные функции на основе уже имеющихся.

К числу базовых примитивно рекурсивных функций относятся функции следующих трёх видов:

Нулевая функция-- функция без аргументов, всегда возвращающая0 .

Функция следованияодного переменного, сопоставляющая любому натуральному числунепосредственно следующее за ним натуральное число.

Функции, где, от n переменных, сопоставляющие любому упорядоченному набору натуральных чисел число из этого набора.

Операторы подстановки и примитивной рекурсии определяются следующим образом:

Оператор суперпозиции (иногда--оператор подстановки). Пусть -- функция от m переменных, а -- упорядоченный набор функций отпеременных каждая. Тогда результатом суперпозиции функцийв функцию называется функцияотпеременных, сопоставляющая любому упорядоченному набору натуральных чисел число.

Оператор примитивной рекурсии. Пусть -- функция от n переменных, а -- функция от переменных. Тогда результатом применения оператора примитивной рекурсии к паре функций и называется функция от переменной вида;

В данном определении переменнуюможно понимать как счётчик итераций, -- как исходную функцию в начале итерационного процесса, выдающего некую последовательность функцийпеременных, начинающуюся с, и -- как оператор, принимающий на входпеременных, номер шага итерации, функцию на данном шаге итерации, и возвращающий функцию на следующем шаге итерации.

Множество примитивно рекурсивных функций -- это минимальное множество, содержащее все базовые функции и замкнутое относительно указанных операторов подстановки и примитивной рекурсии.

В терминах императивного программирования -- примитивно рекурсивные функции соответствуют программным блокам, в которых используется только арифметические операции, а также условный оператор и оператор арифметического цикла (оператор цикла, в котором число итераций известно на момент начала цикла). Если же программист начинает использовать оператор цикла while, в котором число итераций заранее неизвестно и, в принципе, может быть бесконечным, то он переходит в класс частично рекурсивных функций.

Укажем на ряд широко известных арифметических функций, являющихся примитивно рекурсивными.

Функция сложения двух натуральных чисел () может быть рассмотрена в качестве примитивно рекурсивной функции двух переменных, получаемой в результате применения оператора примитивной рекурсии к функциям и, вторая из которых получается подстановкой основной функции в основную функцию:

Умножение двух натуральных чисел может быть рассмотрено в качестве примитивно рекурсивной функции двух переменных, получаемой в результате применения оператора примитивной рекурсии к функциям и, вторая из которых получается подстановкой основных функций и в функцию сложения:

Симметрическая разность(абсолютная величина разности) двух натуральных чисел () может быть рассмотрена в качестве примитивно рекурсивной функции двух переменных, получаемой в результате применения следующих подстановок и примитивных рекурсий:

Пусть есть 2 функции:

: A→B и g: D→F

Пусть область определения D функции g входит в область значений функции f (DB). Тогда можно определить новую функцию – суперпозицию (композицию, сложную функцию) функций f и g: z = g ((x )).

Примеры. f(x)=x 2 , g(x)=e x . f:R→R, g:R→R.

(g(x))=e 2x , g((x))=.

Определение

Пусть идве функции. Тогда их композицией называется функция, определённая равенством:

Свойства композиции

    Композиция ассоциативна:

    Если F = id X - тождественное отображение на X , то есть

.

    Если G = id Y - тождественное отображение на Y , то есть

.

Дополнительные свойства

Счетные и несчетные множества.

Два конечных множества состоят из равного числа элементов, если между этими множествами можно установить взаимно однозначное соответствие. Число элементов конечного множества – мощность множества.

Для бесконечного множества можно установить взаимно однозначное соответствие между всем множеством и его частью.

Самым простым из бесконечных множеств является множество N.

Определение. Множества А и В называются эквивалентными (АВ), если между ними можно установить взаимно однозначное соответствие.

Если эквивалентны два конечных множества, то они состоят из одного и того же числа элементов.

Если же эквивалентные между собой множества А и В произвольны, то говорят, что А и В имеют одинаковую мощность . (мощность = эквивалентность).

Для конечных множеств понятие мощности совпадает с понятием числа элементов множества.

Определение. Множество называется счетным , если можно установить взаимно однозначное соответствие между ним и множеством натуральных чисел. (Т.е. счетное множество – бесконечное, эквивалентное множеству N).

(Т.е. все элементы счетного множества можно занумеровать).

Свойства отношения равномощности.

1) АА- рефлексивность.

2) АВ, то ВА – симметричность.

3) АВ и ВС, то АС – транзитивность.

Примеры.

1) n→2n, 2,4,6,… - четные натуральные

2) n→2n-1, 1,3,5,…- нечетные натуральные.

Свойства счетных множеств .

1. Бесконечные подмножества счетного множества счетны.

Доказательство . Т.к. А – счетно, то А: х 1 ,х 2 ,… - отобразили А в N.

ВА, В: →1,→2,… - поставили каждому элементу В в соответствиенатуральное число, т.е. отобразили В в N. Следовательно В – счетно. Ч.т.д.

2. Объединение конечной (счетной) системы счетных множеств – счетно.

Примеры .

1. Множество целых чисел Z – счетно, т.к. множество Z можно представить как объединение счетных множеств А и В, где А: 0,1,2,.. и В: -1,-2,-3,…

2. Множество упорядоченных пар {(m,n): m,nZ} (т.е. (1,3)≠(3,1)).

3 (!) . Множество рациональных чисел – счетно.

Q=. Можно установить взаимно однозначное соответствие между множеством несократимых дробейQ и множеством упорядоченных пар:

Т.о. множество Q равномощно множеству {(p,q)}{(m,n)}.

Множество {(m,n)} – множество всех упорядоченных пар – счетно. Следовательно и множество {(p,q)} – счетно, а значит и Q – счетно.

Определение. Иррациональным числом называется произвольная бесконечная десятичная непериодическая дробь, т.е.  0 , 1  2 …

Множество всех десятичных дробей образуют множество вещественных (действительных) чисел.

Множество иррациональных чисел – несчетно.

Теорема 1 . Множество вещественных чисел из промежутка (0,1) – несчетное множество.

Доказательство . Допустим противное, т.е. что все числа интервала (0,1) можно занумеровать. Тогда, записывая эти числа в виде бесконечных десятичных дробей, получим последовательность:

х 1 =0,а 11 а 12 …a 1n …

x 2 =0,a 21 a 22 …a 2n …

…………………..

x n =0,a n 1 a n 2 …a nn …

……………………

Рассмотрим теперь вещественное число х=0,b 1 b 2 …b n …, где b 1 - любая цифра, отличная от а 11 , (0 и 9), b 2 - любая цифра, отличная от а 22 , (0 и 9),…, b n - любая цифра, отличная от a nn , (0 и 9).

Т.о. х(0,1), но хx i (i=1,…,n) т.к. в противном случае, b i =a ii . Пришли к противоречию. Ч.т.д.

Теорема 2. Любой промежуток вещественной оси является несчетным множеством.

Теорема 3. Множество действительных (вещественных) чисел – несчетно.

Про всякое множество, равномощное множеству вещественных чисел говорят, что оно мощности континуума (лат. continuum – непрерывное, сплошное).

Пример . Покажем, что интервал обладает мощностью континуума.

Функция у=tg x: →R отображает интервал на всю числовую прямую (график).

Построить функцию

Мы предлагаем вашему вниманию сервис по потроению графиков функций онлайн, все права на который принадлежат компании Desmos . Для ввода функций воспользуйтесь левой колонкой. Вводить можно вручную либо с помощью виртуальной клавиатуры внизу окна. Для увеличения окна с графиком можно скрыть как левую колонку, так и виртуальную клавиатуру.

Преимущества построения графиков онлайн

  • Визуальное отображение вводимых функций
  • Построение очень сложных графиков
  • Построение графиков, заданных неявно (например эллипс x^2/9+y^2/16=1)
  • Возможность сохранять графики и получать на них ссылку, которая становится доступной для всех в интернете
  • Управление масштабом, цветом линий
  • Возможность построения графиков по точкам, использование констант
  • Построение одновременно нескольких графиков функций
  • Построение графиков в полярной системе координат (используйте r и θ(\theta))

С нами легко в режиме онлайн строить графики различной сложности. Построение производится мгновенно. Сервис востребован для нахождения точек пересечения функций, для изображения графиков для дальнейшего их перемещения в Word документ в качестве иллюстраций при решении задач, для анализа поведенческих особенностей графиков функций. Оптимальным браузером для работы с графиками на данной странице сайта является Google Chrome. При использовании других браузеров корректность работы не гарантируется.

Познакомимся с понятием суперпозиции (или наложения) функций, которая состоит в том, что вместо аргумента данной функции подставляется некоторая функция от другого аргумента. Например, суперпозиция функций даёт функцию аналогично получаются и функции

В общем виде, предположим, что функция определена в некоторой области а функция определена в области причем значения ее все содержатся в области Тогда переменная z, как говорят, через посредство у, и сама является функцией от

По заданному из сначала находят соответствующее ему (по правилу, характеризуемому знаком значение у из У, а затем устанавливают соответствующее этому значению у (по правилу,

характеризуемому знаком значение его и считают соответствующим выбранному х. Полученная функция от функции или сложная функция и есть результат суперпозиции функций

Предположение, что значения функции не выходят за пределы той области У, в которой определена функция весьма существенно: если его опустить, то может получиться и нелепость. Например, полагая мы можем рассматривать лишь такие значения х, для которых ибо иначе выражение не имело бы смысла.

Мы считаем полезным здесь же подчеркнуть, что характеристика функции, как сложной, связана не с природой функциональной зависимости z от х, а лишь со способом задания этой зависимости. Например, пусть для у в для Тогда

Здесь функция оказалась заданной в виде сложной функции.

Теперь, когда полностью выяснено понятие суперпозиции функций, мы можем точно охарактеризовать простейший из тех классов функций, которые изучаются в анализе: это, прежде всего, перечисленные выше элементарные функции а затем - все те, которые из них получаются с помощью четырёх арифметических действий и суперпозиций, последовательно применённых конечное число раз. Про них говорят, что они выражаются через элементарные в конечном виде; иногда их все также называют элементарными.

Впоследствии, овладев более сложным аналитическим аппаратом (бесконечные ряды, интегралы), мы познакомимся и с другими функциями, также играющими важную роль в анализе, но уже выходящими за пределы класса элементарных функций.