Основы биометрии. Биометрические технологии

Презентацию к данной лекции можно скачать .

Простая идентификация личности. Комбинация параметров лица, голоса и жестов для более точной идентификации. Интеграция возможностей модулей Intel Perceptual Computing SDK для реализации многоуровневой системы информационной безопасности, основанной на биометрической информации.

В данной лекции дается введение в предмет биометрических систем защиты информации, рассматривается принцип действия, методы и применение на практике. Обзор готовых решений и их сравнение. Рассматриваются основные алгоритмы идентификации личности. Возможности SDK по созданию биометрических методов защиты информации.

4.1. Описание предметной области

Существует большое разнообразие методов идентификации и многие из них получили широкое коммерческое применение. На сегодняшний день в основе наиболее распространенных технологий верификации и идентификации лежит использование паролей и персональных идентификаторов ( personal identification number - PIN ) или документов типа паспорта, водительских прав. Однако такие системы слишком уязвимы и могут легко пострадать от подделки, воровства и других факторов. Поэтому все больший интерес вызывают методы биометрической идентификации, позволяющие определить личность человека по его физиологическим характеристикам путем распознания по заранее сохраненным образцам.

Диапазон проблем, решение которых может быть найдено с использованием новых технологий, чрезвычайно широк:

  • предотвратить проникновение злоумышленников на охраняемые территории и в помещения за счет подделки, кражи документов, карт, паролей;
  • ограничить доступ к информации и обеспечить персональную ответственность за ее сохранность;
  • обеспечить допуск к ответственным объектам только сертифицированных специалистов;
  • процесс распознавания, благодаря интуитивности программного и аппаратного интерфейса, понятен и доступен людям любого возраста и не знает языковых барьеров;
  • избежать накладных расходов, связанных с эксплуатацией систем контроля доступа (карты, ключи);
  • исключить неудобства, связанные с утерей, порчей или элементарным забыванием ключей, карт, паролей;
  • организовать учет доступа и посещаемости сотрудников.

Кроме того, важным фактором надежности является то, что она абсолютно никак не зависит от пользователя. При использовании парольной защиты человек может использовать короткое ключевое слово или держать бумажку с подсказкой под клавиатурой компьютера. При использовании аппаратных ключей недобросовестный пользователь будет недостаточно строго следить за своим токеном, в результате чего устройство может попасть в руки злоумышленника. В биометрических же системах от человека не зависит ничего. Еще одним фактором, положительно влияющим на надежность биометрических систем, является простота идентификации для пользователя. Дело в том, что, например, сканирование отпечатка пальца требует от человека меньшего труда, чем ввод пароля. А поэтому проводить эту процедуру можно не только перед началом работы, но и во время ее выполнения, что, естественно, повышает надежность защиты. Особенно актуально в этом случае использование сканеров, совмещенных с компьютерными устройствами. Так, например, есть мыши, при использовании которых большой палец пользователя всегда лежит на сканере. Поэтому система может постоянно проводить идентификацию, причем человек не только не будет приостанавливать работу, но и вообще ничего не заметит. В современном мире, к сожалению, продается практически все, в том числе и доступ к конфиденциальной информации. Тем более что человек, передавший идентификационные данные злоумышленнику, практически ничем не рискует. Про пароль можно сказать, что его подобрали, а про смарт-карту, что ее вытащили из кармана. В случае же использования биометрической защиты подобной ситуации уже не произойдет.

Выбор отраслей, наиболее перспективных для внедрения биометрии, с точки зрения аналитиков, зависит, прежде всего, от сочетания двух параметров: безопасности (или защищенности) и целесообразности использования именно этого средства контроля или защиты. Главное место по соответствию этим параметрам, бесспорно, занимают финансовая и промышленная сфера, правительственные и военные учреждения, медицинская и авиационная отрасли, закрытые стратегические объекты. Данной группе потребителей биометрических систем безопасности в первую очередь важно не допустить неавторизованного пользователя из числа своих сотрудников к неразрешенной для него операции , а также важно постоянно подтверждать авторство каждой операции . Современная система безопасности уже не может обходиться не только без привычных средств, гарантирующих защищенность объекта, но и без биометрии. Также биометрические технологии используются для контроля доступа в компьютерных, сетевых системах, различных информационных хранилищах, банках данных и др.

Биометрические методы защиты информации становятся актуальней с каждым годом. С развитием техники: сканеров, фото и видеокамер спектр задач, решаемых с помощью биометрии, расширяется, а использование методов биометрии становится популярнее. Например, банки, кредитные и другие финансовые организации служат для их клиентов символом надежности и доверия. Чтобы оправдать эти ожидания, финансовые институты все больше внимание уделяют идентификации пользователей и персонала, активно применяя биометрические технологии. Некоторые варианты использования биометрических методов:

  • надежная идентификация пользователей различных финансовых сервисов, в т.ч. онлайновых и мобильных (преобладает идентификация по отпечаткам пальцев, активно развиваются технологии распознавания по рисунку вен на ладони и пальце и идентификация по голосу клиентов, обращающихся в колл-центры);
  • предотвращение мошенничеств и махинаций с кредитными и дебетовыми картами и другими платежными инструментами (замена PIN-кода распознаванием биометрических параметров, которые невозможно похитить, "подсмотреть", клонировать);
  • повышение качества обслуживания и его комфорта (биометрические банкоматы);
  • контроль физического доступа в здания и помещения банков, а также к депозитарным ячейкам, сейфам, хранилищам (с возможностью биометрической идентификации, как сотрудника банка, так и клиента-пользователя ячейки);
  • защита информационных систем и ресурсов банковских и других кредитных организаций.

4.2. Биометрические системы защиты информации

Биометрические системы защиты информации - системы контроля доступа, основанные на идентификации и аутентификации человека по биологическим признакам, таким как структура ДНК, рисунок радужной оболочки глаза, сетчатка глаза, геометрия и температурная карта лица, отпечаток пальца, геометрия ладони. Также эти методы аутентификации человека называют статистическими методами, так как основаны на физиологических характеристиках человека, присутствующих от рождения и до смерти, находящиеся при нем в течение всей его жизни, и которые не могут быть потеряны или украдены. Часто используются еще и уникальные динамические методы биометрической аутентификации - подпись, клавиатурный почерк, голос и походка, которые основаны на поведенческих характеристиках людей.

Понятие " биометрия " появилось в конце девятнадцатого века. Разработкой технологий для распознавания образов по различным биометрическим характеристикам начали заниматься уже достаточно давно, начало было положено в 60-е годы прошлого века. Значительных успехов в разработке теоретических основ этих технологий добились наши соотечественники. Однако практические результаты получены в основном на западе и совсем недавно. В конце двадцатого века интерес к биометрии значительно вырос благодаря тому, что мощность современных компьютеров и усовершенствованные алгоритмы позволили создать продукты, которые по своим характеристикам и соотношению стали доступны и интересны широкому кругу пользователей. Отрасль науки нашла свое применение в разработках новых технологий безопасности. Например, биометрическая система может контролировать доступ к информации и хранилищам в банках, ее можно использовать на предприятиях, занятых обработкой ценной информации, для защиты ЭВМ, средств связи и т. д.

Суть биометрических систем сводится к использованию компьютерных систем распознавания личности по уникальному генетическому коду человека. Биометрические системы безопасности позволяют автоматически распознавать человека по его физиологическим или поведенческим характеристикам.


Рис. 4.1.

Описание работы биометрических систем:

Все биометрические системы работают по одинаковой схеме. Вначале, происходит процесс записи, в результате которого система запоминает образец биометрической характеристики. Некоторые биометрические системы делают несколько образцов для более подробного запечатления биометрической характеристики. Полученная информация обрабатывается и преобразуется в математический код. Биометрические системы информационной безопасности используют биометрические методы идентификации и аутентификации пользователей. Идентификация по биометрической системы проходит в четыре стадии:

  • Регистрация идентификатора - сведение о физиологической или поведенческой характеристике преобразуется в форму, доступную компьютерным технологиям, и вносятся в память биометрической системы;
  • Выделение - из вновь предъявленного идентификатора выделяются уникальные признаки, анализируемые системой;
  • Сравнение - сопоставляются сведения о вновь предъявленном и ранее зарегистрированном идентификаторе;
  • Решение - выносится заключение о том, совпадают или не совпадают вновь предъявленный идентификатор.

Заключение о совпадении/несовпадении идентификаторов может затем транслироваться другим системам (контроля доступа, защиты информации и т. д), которые далее действуют на основе полученной информации.

Одна из самых важных характеристик систем защиты информации, основанных на биометрических технологиях, является высокая надежность , то есть способность системы достоверно различать биометрические характеристики, принадлежащие разным людям, и надежно находить совпадения. В биометрии эти параметры называются ошибкой первого рода ( False Reject Rate , FRR ) и ошибкой второго рода ( False Accept Rate , FAR ). Первое число характеризует вероятность отказа доступа человеку, имеющему доступ , второе - вероятность ложного совпадения биометрических характеристик двух людей. Подделать папиллярный узор пальца человека или радужную оболочку глаза очень сложно. Так что возникновение "ошибок второго рода" (то есть предоставление доступа человеку, не имеющему на это право) практически исключено. Однако, под воздействием некоторых факторов биологические особенности, по которым производится идентификация личности, могут изменяться. Например, человек может простудиться, в результате чего его голос поменяется до неузнаваемости. Поэтому частота появлений "ошибок первого рода" (отказ в доступе человеку, имеющему на это право) в биометрических системах достаточно велика. Система тем лучше, чем меньше значение FRR при одинаковых значениях FAR . Иногда используется и сравнительная характеристика EER ( Equal Error Rate ), определяющая точку, в которой графики FRR и FAR пересекаются. Но она далеко не всегда репрезентативна. При использовании биометрических систем, особенно системы распознавания по лицу, даже при введении корректных биометрических характеристик не всегда решение об аутентификации верно. Это связано с рядом особенностей и, в первую очередь , с тем, что многие биометрические характеристики могут изменяться. Существует определенная степень вероятности ошибки системы. Причем при использовании различных технологий ошибка может существенно различаться. Для систем контроля доступа при использовании биометрических технологий необходимо определить, что важнее не пропустить "чужого" или пропустить всех "своих".


Рис. 4.2.

Не только FAR и FRR определяют качество биометрической системы. Если бы это было только так, то лидирующей технологией было бы распознавание людей по ДНК, для которой FAR и FRR стремятся к нулю. Но ведь очевидно, что эта технология не применима на сегодняшнем этапе развития человечества. Поэтому важной характеристикой является устойчивость к муляжу, скорость работы и стоимость системы. Не стоит забывать и то, что биометрическая характеристика человека может изменяться со временем, так что если она неустойчива - это существенный минус. Также важным фактором для пользователей биометрических технологий в системах безопасности является простота использования. Человек, характеристики которого сканируются, не должен при этом испытывать никаких неудобств. В этом плане наиболее интересным методом является, безусловно, технология распознавания по лицу. Правда, в этом случае возникают иные проблемы, связанные в первую очередь , с точностью работы системы.

Обычно биометрическая система состоит из двух модулей: модуль регистрации и модуль идентификации.

Модуль регистрации "обучает" систему идентифицировать конкретного человека. На этапе регистрации видеокамера или иные датчики сканируют человека для того, чтобы создать цифровое представление его облика. В результате сканирования чего формируются несколько изображений. В идеальном случае, эти изображения будут иметь слегка различные ракурсы и выражения лица, что позволит получить более точные данные. Специальный программный модуль обрабатывает это представление и определяет характерные особенности личности, затем создает шаблон . Существуют некоторые части лица, которые практически не изменяются с течением времени, это, например, верхние очертания глазниц, области окружающие скулы, и края рта. Большинство алгоритмов, разработанных для биометрических технологий, позволяют учитывать возможные изменения в прическе человека, так как они не используют для анализа области лица выше границы роста волос. Шаблон изображения каждого пользователя хранится в базе данных биометрической системы.

Модуль идентификации получает от видеокамеры изображение человека и преобразует его в тот же цифровой формат, в котором хранится шаблон . Полученные данные сравниваются с хранимым в базе данных шаблоном для того, чтобы определить, соответствуют ли эти изображения друг другу. Степень подобия, требуемая для проверки, представляет собой некий порог, который может быть отрегулирован для различного типа персонала, мощности PC , времени суток и ряда иных факторов.

Идентификация может выполняться в виде верификации, аутентификации или распознавания. При верификации подтверждается идентичность полученных данных и шаблона, хранимого в базе данных. Аутентификация - подтверждает соответствие изображения, получаемого от видеокамеры одному из шаблонов, хранящихся в базе данных. При распознавании, если полученные характеристики и один из хранимых шаблонов оказываются одинаковыми, то система идентифицирует человека с соответствующим шаблоном.

4.3. Обзор готовых решений

4.3.1. ИКАР Лаб: комплекс криминалистического исследования фонограмм речи

Аппаратно-программный комплекс ИКАР Лаб предназначен для решения широкого круга задач анализа звуковой информации, востребованного в специализированных подразделениях правоохранительных органов, лабораториях и центрах судебной экспертизы, службах расследования летных происшествий, исследовательских и учебных центрах. Первая версия продукта была выпущена в 1993 году и явилась результатом совместной работы ведущих аудиоэкспертов и разработчиков программного обеспечения. Входящие в состав комплекса специализированные программные средства обеспечивают высокое качество визуального представления фонограмм речи. Современные алгоритмы голосовой биометрии и мощные инструменты автоматизации всех видов исследования фонограмм речи позволяют экспертам существенно повысить надежность и эффективность экспертиз. Входящая в комплекс программа SIS II обладает уникальными инструментами для идентификационного исследования: сравнительное исследование диктора, записи голоса и речи которого предоставлены на экспертизу и образцов голоса и речи подозреваемого. Идентификационная фоноскопическая экспертиза основывается на теории уникальности голоса и речи каждого человека. Анатомическое факторы: строение органов артикуляции, форма речевого тракта и ротовой полости, а также внешние факторы: навыки речи, региональные особенности, дефекты и др.

Биометрические алгоритмы и экспертные модули позволяют автоматизировать и формализовать многие процессы фоноскопического идентификационного исследования, такие как поиск одинаковых слов, поиск одинаковых звуков, отбор сравниваемых звуковых и мелодических фрагментов, сравнение дикторов по формантам и основному тону, аудитивные и лингвистические типы анализа. Результаты по каждому методу исследования представляются в виде численных показателей общего идентификационного решения.

Программа состоит из ряда модулей, с помощью которых производится сравнение в режиме "один-к-одному". Модуль "Сравнения формант" основан на термине фонетики - форманте, обозначающий акустическую характеристику звуков речи (прежде всего гласных), связанную с уровнем частоты голосового тона и образующую тембр звука. Процесс идентификации с использованием модуля "Сравнения формант" может быть разделен на два этапа: cначала эксперт осуществляет поиск и отбор опорных звуковых фрагментов, а после того как опорные фрагменты для известного и неизвестного дикторов набраны, эксперт может начать сравнение. Модуль автоматически рассчитывает внутридикторскую и междикторскую вариативность формантных траекторий для выбранных звуков и принимает решение о положительной/отрицательной идентификации или неопределенном результате. Также модуль позволяет визуально сравнить распределения выбранных звуков на скаттерограмме.

Модуль "Сравнение Основного Тона" позволяет автоматизировать процесс идентификации дикторов с помощью метода анализа мелодического контура. Метод предназначен для сравнения речевых образцов на основе параметров реализации однотипных элементов структуры мелодического контура. Для анализа предусмотрено 18 типов фрагментов контура и 15 параметров их описания, включая значения минимума, среднего, максимума, скорости изменения тона, эксцесса, скоса и др. Модуль возвращает результаты сравнения в виде процентного совпадения для каждого из параметров и принимает решение о положительной/отрицательной идентификации или неопределенном результате. Все данные могут экспортироваться в текстовый отчет.

Модуль автоматической идентификации позволяет производить сравнение в режиме "один-к-одному" с использованием алгоритмов:

  • Спектрально-форматный;
  • Статистика основного тона;
  • Смесь Гауссовых распределений;

Вероятности совпадения и различия дикторов рассчитываются не только для каждого из методов, но и для их совокупности. Все результаты сравнения речевых сигналов двух файлах, получаемые в модуле автоматической идентификации, основаны на выделении в них идентификационно значимых признаков и вычислении меры близости между полученными наборами признаков и вычислений меры близости полученных наборов признаков между собой. Для каждого значения этой меры близости во время периода обучения модуля автоматического сравнения были получены вероятности совпадения и различия дикторов, речь которых содержалась в сравниваемых файлах. Эти вероятности были получены разработчиками на большой обучающей выборке фонограмм: десятки тысяч дикторов, различные каналы звукозаписи, множество сессий звукозаписи, разнообразный тип речевого материала. Применение статистических данных к единичному случаю сравнения файл-файл требует учета возможного разброса получаемых значений меры близости двух файлов и соответствующей ей вероятности совпадения/различия дикторов в зависимости от различных деталей ситуации произнесения речи. Для таких величин в математической статистике предложено использовать понятие доверительного интервала. Модуль автоматического сравнения выводит численные результаты с учетом доверительных интервалов различных уровней, что позволяет пользователю увидеть не только среднюю надежность метода, но и наихудший результат, полученный на обучающей базе. Высокая надежность биометрического движка, разработанного компанией ЦРТ, была подтверждена испытаниями NIST (National Institute of Standards and Technology)

  • Некоторые методы сравнения являются полуавтоматическими (лингвистический и аудитивный анализы)
  • Обычно при классификации биометрических технологий выделяют две группы систем по типу используемых биометрических параметров:

    • Первая группа систем использует статические биометрические параметры: отпечатки пальцев, геометрия руки, сетчатка глаза и т. п.
    • Вторая группа систем использует для идентификации динамические параметры: динамика воспроизведения подписи или рукописного ключевого слова, голос и т. п.

    Увеличившийся в последнее время интерес к данной тематике в мире принято связывать с угрозами активизировавшегося международного терроризма . Многие государства в ближайшей перспективе планируют ввести в обращение паспорта с биометрическими данными .

    История

    В июне 2005 было заявлено, что к концу года в России будет утверждена форма нового заграничного паспорта. А в он будет введён в массовое обращение. Предположительно будет включать фотографию, сделанную методом лазерной гравировки и отпечатки двух пальцев.

    Схема работы

    Все биометрические системы работают практически по одинаковой схеме. Во-первых, система запоминает образец биометрической характеристики (это и называется процессом записи). Во время записи некоторые биометрические системы могут попросить сделать несколько образцов для того, чтобы составить наиболее точное изображение биометрической характеристики. Затем полученная информация обрабатывается и преобразовывается в математический код.

    Кроме того, система может попросить произвести ещё некоторые действия для того, чтобы «приписать» биометрический образец к определённому человеку. Например, персональный идентификационный номер (PIN) прикрепляется к определённому образцу, либо смарт-карта, содержащая образец, вставляется в считывающее устройство. В таком случае снова делается образец биометрической характеристики и сравнивается с представленным образцом.

    Идентификация по любой биометрической системе проходит четыре стадии :

    • Запись - физический или поведенческий образец запоминается системой;
    • Выделение - уникальная информация выносится из образца и составляется биометрический образец;
    • Сравнение - сохранённый образец сравнивается с представленным;
    • Совпадение/несовпадение - система решает, совпадают ли биометрические образцы, и выносит решение.

    Подавляющее большинство людей считают, что в памяти компьютера хранится образец отпечатка пальца, голоса человека или картинка радужной оболочки его глаза. Но на самом деле в большинстве современных систем это не так. В специальной базе данных хранится цифровой код длиной до 1000 бит, который ассоциируется с конкретным человеком, имеющим право доступа. Сканер или любое другое устройство, используемое в системе, считывает определённый биологический параметр человека. Далее он обрабатывает полученное изображение или звук, преобразовывая их в цифровой код. Именно этот ключ и сравнивается с содержимым специальной базы данных для идентификации личности.

    Параметры биометрических систем

    Вероятность возникновения ошибок FAR/FRR, то есть коэффициентов ложного пропуска (False Acceptance Rate - система предоставляет доступ незарегистрированному пользователю) и ложного отказа в доступе (False Rejection Rate - доступ запрещён зарегистрированному в системе человеку). Необходимо учитывать взаимосвязь этих показателей: искусственно снижая уровень «требовательности» системы (FAR), мы, как правило, уменьшаем процент ошибок FRR, и наоборот.

    На сегодняшний день все биометрические технологии являются вероятностными, ни одна из них не способна гарантировать полное отсутствие ошибок FAR/FRR, и нередко данное обстоятельство служит основой для не слишком корректной критики биометрии .

    Практическое применение

    Биометрические технологии активно применяются во многих областях, связанных с обеспечением безопасности доступа к информации и материальным объектам, а также в задачах уникальной идентификации личности.

    Применения биометрических технологий разнообразны: доступ к рабочим местам и сетевым ресурсам, защита информации, обеспечение доступа к определённым ресурсам и безопасность. Ведение электронного бизнеса и электронных правительственных дел возможно только после соблюдения определённых процедур по идентификации личности. Биометрические технологии используются в области безопасности банковских обращений, инвестирования и других финансовых перемещений, а также розничной торговле, охране правопорядка, вопросах охраны здоровья, а также в сфере социальных услуг. Биометрические технологии в скором будущем будут играть главную роль в вопросах персональной идентификации во многих сферах. Применяемая отдельно или используемая совместно со смарт-картами, ключами и подписями, биометрия скоро станет применяться во всех сферах экономики и частной жизни .

    Ключевые термины

    Радужная оболочка глаза

    Технология распознавания радужной оболочки глаза была разработана для того, чтобы свести на нет навязчивость сканирования сетчатки глаза, при котором используются инфракрасные лучи или яркий свет. Учёные также провели ряд исследований, которые показали, что сетчатка глаза человека может меняться со временем, в то время как радужная оболочка глаза остается неизменной. И самое главное, что невозможно найти два абсолютно идентичных рисунка радужной оболочки глаза, даже у близнецов.

    Для получения индивидуальной записи о радужной оболочке глаза черно-белая камера делает 30 записей в секунду. Еле различимый свет освещает радужную оболочку, и это позволяет видеокамере сфокусироваться на радужке. Одна из записей затем оцифровывается и сохраняется в базе данных зарегистрированных пользователей. Вся процедура занимает несколько секунд, и она может быть полностью компьютеризирована при помощи голосовых указаний и автофокусировки.

    В аэропортах, например, имя пассажира и номер рейса сопоставляются с изображением радужной оболочки, никакие другие данные не требуются. Размер созданного файла, 512 байт с разрешением 640 х 480, позволяет сохранить большое количество таких файлов на жестком диске компьютера.

    Очки и контактные линзы, даже цветные, никак не повлияют на процесс получения изображения. Также нужно отметить, что произведенные операции на глазах, удаление катаракты или вживление имплантатов роговицы не изменяют характеристики радужной оболочки, её невозможно изменить или модифицировать. Слепой человек также может быть идентифицирован при помощи радужной оболочки глаза. Пока у глаза есть радужная оболочка, её хозяина можно идентифицировать.

    Камера может быть установлена на расстоянии от 10 см до 1 метра, в зависимости от сканирующего оборудования. Термин «сканирование» может быть обманчивым, так как в процессе получения изображения проходит не сканирование, а простое фотографирование.

    Радужная оболочка по текстуре напоминает сеть с большим количеством окружающих кругов и рисунков, которые могут быть измерены компьютером. Программа сканирования радужной оболочки глаза использует около 260 точек привязки для создания образца. Для сравнения, лучшие системы идентификации по отпечаткам пальцев используют 60-70 точек.

    Стоимость всегда была самым большим сдерживающим моментом перед внедрением технологии, но сейчас системы идентификации по радужной оболочке становятся более доступными для различных компаний. Сторонники технологии заявляют о том, что распознавание радужной оболочки глаза очень скоро станет общепринятой технологией идентификации в различных областях.

    Методы

    Ранее в биометрии имел применение рисунок кровеносных сосудов на сетчатке глаза. В последнее время этот метод распознавания не применяется, так как, кроме биометрического признака, несёт в себе информацию о здоровье человека.

    Форма кисти руки

    Проблема технологии: даже без учёта возможности ампутации , такое заболевание, как артрит , может сильно помешать применению сканеров.

    Голос

    Голосовая биометрия, позволяющая измерять голос каждого человека, незаменима при удаленном обслуживании клиентов, когда основным средством взаимодействия является голос, в первую очередь, в автоматических голосовых меню и контакт-центрах.

    Традиционные способы аутентификации клиента при удаленном обслуживании проверяют знания клиента (для этого клиента просят ввести какой-то пароль или ответить на вопросы безопасности - адрес, номер счета, девичью фамилию матери и пр.) Как показывают современные исследования в области безопасности, злоумышленники относительно легко могут добыть персональные данные практически любого человека и таким образом получить доступ, например, к его банковскому счету. Голосовая биометрия решает эту проблему, позволяя при удаленном телефонном обслуживании проверят действительно личность клиента, а не его знания. При использовании голосовой биометрии клиенту при звонке в IVR или в контакт-центр достаточно произнести парольную фразу или просто поговорить с оператором (рассказать о цели звонка) - голос звонящего будет автоматически проверен - действительно ли это голос принадлежит тому, за кого он себя выдает?

    • не требуется специальных сканеров - достаточно обычного микрофона в телефоне или диктофоне
    • не предъявляется специальных требований к устройствам - может быть использован любой диктофон (аналоговый или цифровой), мобильный или стационарный телефон (хоть 80-х годов выпуска)
    • просто - не требуется специальных умений
    1. Текстонезависимая - определение личности человека осуществляется по свободной речи, не требуется произнесения каких-то специальных слов и выражений. Например, человек может просто прочитать отрывок из стихотворения или обсудить с оператором контакт-центра цель своего звонка.
    2. Текстозависимая - для определения личности человек должен произнести строго определенную фразу. При этом данный тип голосовой биометрии делится на два:
      • Текстозависимая аутентификация по статической парольной фразе - для проверки личности необходимо произнести ту же фразу, которая произносилась и при регистрации голоса данного человека в системе.
      • Текстозависимая аутентификация по динамической парольной фразе - для проверки личности человека предлагается произнести фразу, состоящую из набора слов, произнесенных данным человеком при регистрации голоса в системе. Преимущество динамической парольной фразы от статической состоит в том, что каждый раз фраза меняется, что затрудняет мошенничество с использованием записи голоса человека (например, на диктофон).

    Проблема технологии

    Некоторые люди не могут произносить звуки, голос может меняться в связи с заболеванием и с возрастом. Кроме того, на точность аутентификации влияет шумовая обстановка вокруг человека (шумы, реверберация).

    В последние годы во всем мире наблюдается все возрастающий интерес к методам распознавания и идентификации личности. Основные пути и способы решения этих задач лежат в области разработки биометрических систем. В биометрических системах для распознавания человека используется совокупность биометрических характеристик, основанных на биологических особенностях человеческого тела. В качестве таких биометрических характеристик могут выступать: голос, почерк, отпечатки пальцев, геометрия кисти руки, рисунок сетчатки или радужной оболочки глаза, лицо и ДНК.}

    Биометрическая защита более эффективна в сравнении с такими методами, как использование паролей, PIN-кодов, смарт-карт, жетонов (tokens) или технологии PKI (инфраструктура открытых ключей), поскольку биометрия позволяет идентифицировать именно конкретного человека, а не устройство. Традиционные методы защиты не исключают возможности потери или кражи информации, вследствие чего она становится доступной незаконным пользователям. Уникальный биометрический идентификатор, каковым является, например, отпечаток пальца или изображение лица, служит ключом, который невозможно потерять. Биометрическая система безопасности позволяет отказаться от парольной защиты либо служит для ее усиления.

    Одной из основных причин, которые существенно повысили значимость автоматической обработки и анализа биометрической информации, явилось повышение требований к функциональным возможностям автоматических систем безопасности, расположенных в общественных местах (вокзалы, аэропорты, супермаркеты и т. п.), связанные с необходимостью в реальном времени выполнять необходимые действия по установлению личности присутствующих на контролируемой территории людей, причем, зачастую, скрытно, то есть не только бесконтактно (дистанционно), но и без специального сотрудничества (специального предъявления биометрических признаков) со стороны идентифицируемых персон.

    В настоящее время существует множество методов биометрической аутентификации, которые делятся на две основные группы - статические и динамические методы.

    Статические методы биометрической аутентификации основываются на физиологической (статической) характеристике человека, то есть уникальной характеристике, данной ему от рождения и неотъемлемой от него. К этой группе относятся следующие методы аутентификации.

    1. $\textit{По отпечатку пальца.}$ В основе этого метода лежит уникальность для каждого человека рисунка папиллярных узоров на пальцах. Отпечаток пальца, полученный с помощью специального сканера, преобразуется в цифровой код (свертку) и сравнивается с ранее введенным эталоном. Данная технология является самой распространенной по сравнению с другими методами биометрической аутентификации.
    2. $\textit{По форме ладони.}$ Данный метод построен на геометрии кисти руки. С помощью специального устройства, состоящего из камеры и нескольких подсвечивающих диодов (включаясь по очереди, они дают разные проекции ладони), строится трехмерный образ кисти руки, по которому формируется свертка и распознается человек.
    3. $\textit{По расположению вен на лицевой стороне ладони.}$ С помощь инфракрасной камеры считывается рисунок вен на лицевой стороне ладони или кисти руки, полученная картинка обрабатывается, и по схеме расположения вен формируется цифровая свертка.
    4. $\textit{По сетчатке глаза.}$ Вернее, это способ идентификации по рисунку кровеносных сосудов глазного дна. Для того чтобы этот рисунок стал виден, человеку нужно посмотреть на удаленную световую точку, при этом подсвеченное глазное дно сканируется специальной камерой.
    5. $\textit{По радужной оболочке глаза.}$ Рисунок радужной оболочки глаза также является уникальной характеристикой человека, причем для ее сканирования достаточно портативной камеры со специализированный программным обеспечением, позволяющим захватывать изображение части лица, из которого выделяется изображение глаза, из которого в свою очередь выделяется рисунок радужной оболочки, по которому строится цифровой код для идентификации человека.
    6. $\textit{По изображению или форме лица.}$ В данном методе идентификации строится двумерный или трехмерный образ лица человека. На лице выделяются контуры бровей, глаз, носа, губ и т. д., вычисляется расстояние между ними и строится не просто образ, а еще множество его вариантов на случаи поворота лица, наклона, изменения выражения. Количество образов варьируется в зависимости от целей использования данного способа (для аутентификации, верификации, удаленного поиска на больших территориях и т. д.).
    7. $\textit{По термограмме лица}$. В основе данного способа аутентификации лежит уникальность распределения на лице артерий, снабжающих кровью кожу, которые выделяют тепло. Для получения термограммы используются специальные камеры инфракрасного диапазона. В отличие от предыдущего, этот метод позволяет различать даже близнецов.
    8. $\textit{По ДНК}$. Преимущества данного способы очевидны, однако используемые в настоящее время методы получения и обработки ДНК работают настолько долго, что такие системы используются только для специализированных экспертиз.
    9. $\textit{Другие методы}$. Существуют еще такие уникальные способы - как идентификация по подногтевому слою кожи, по объему указанных для сканирования пальцев, форме уха, запаху тела и т. д.

    Как видно, большинство биометрических технологий данной группы связано с анализом изображений и реализуется теми или иными методами компьютерного зрения.

    Динамические методы биометрической аутентификации основываются на поведенческой (динамической) характеристике человека, то есть построены на особенностях, характерных для подсознательных движений в процессе воспроизведения какого-либо действия. Методы аутентификации этой группы таковы.

    1. $\textit{По рукописному почерку.}$ Как правило, для этого вида идентификации человека используется его роспись (иногда написание кодового слова). Цифровой код идентификации формируется в зависимости от необходимой степени защиты и наличия оборудования (графический планшет, экран карманного компьютера Palm и т. д.) двух типов:

    По самой росписи, то есть для идентификации используется просто степень совпадения двух картинок;

    По росписи и динамическим характеристикам написания, то есть для идентификации строится свертка, в которую входит информация по непосредственно подписи, временн ым характеристикам нанесения росписи и статистическим характеристикам динамики нажима на поверхность.

    2. $\textit{По клавиатурному почерку.}$ Метод в целом аналогичен вышеописанному, но вместо росписи используется некое кодовое слово (когда для этого используется личный пароль пользователя, такую аутентификацию называют двухфакторной), и не нужно никакого специального оборудования, кроме стандартной клавиатуры. Основной характеристикой, по которой строится свертка для идентификации, является динамика набора кодового слова.

    3. $\textit{По голосу.}$ Это одна из старейших технологий, в настоящее время ее развитие ускорилось, так как предполагается ее широкое использование в построении "интеллектуальных зданий". Существует достаточно много способов построения кода идентификации по голосу, как правило, это различные сочетания частотных и статистических характеристик голоса.

    4. Другие методы. Для данной группы методов также описаны только самые распространенные методы, существуют еще такие уникальные способы, как идентификация по движению губ при воспроизведении кодового слова, по динамике поворота ключа в дверном замке и т. д.

    Краткий исторический обзор.

    Проблематика компьютерной биометрической идентификации активно развивается с 1960-х годов. Можно отметить следующие основные вехи этого процесса.

    1. 1960-e - создано биометрическое подразделение NIST, первые попытки автоматизации процесса идентификации личности по следующим биометрическим характеристикам: лицо, голос, отпечатки, подпись.
    2. 1970-е годы - первые автоматизированные системы верификации личности, методы идентификации по форме ладони и динамической подписи.
    3. 1976 - первые мультибиометрические эксперименты.
    4. 1980-е годы - значительно автоматизированные системы и первые методы

    полностью автоматической идентификации.

    С конца 1980х годов наблюдается всплеск научного и практического интереса к биометрической идентификации, сопровождающийся ростом числа биометрических методов, алгоритмов и технологий, в том числе в СССР и России. Это связано не столько с прикладным интересом к биометрической идентификации, сколько с развитием аппаратных средств, в первую очередь, персональных компьютеров и периферийных устройств для работы с изображениями и аудиосигналами.

    В России наиболее важные результаты по биометрической идентификации были получены в работах С. О. Новикова, В. Ю. Гудкова, О. М. Черномордика по распознаванию отпечатков пальцев, Г. А. Кухарева и А. А. Тельных по различным аспектам лицевой биометрии, А. И. Иванова и А. Ю. Малыгина по нейросетевым методам биометрической идентификации, Л. М. Местецкого по распознаванию на основе параметров кисти руки, И. Н. Спиридонова в области стандартизации и биометрической техники, В. И. Дымкова и И. Н. Синицына по автоматизации научных исследований в области биометрической идентификации, С. Л. Бочкарева в области голосовой идентификации личности, О. С. Ушмаева по мультибиометрии.

    Сложились научные школы, занимающиеся проблематикой биометрической идентификации. Среди них следует выделить коллективы специалистов, работающих в институтах ИПИ РАН, ГосНИИАС, ИСА РАН, МГУ им. М. В. Ломоносова, МГТУ им. Н. Э. Баумана, ФГУП "ПНИЭИ"; компаниях "Биолинк", "Вокорд Телеком", НПП "Лазерные системы", "Системы Папилон", "Сонда", "СТЭЛ", "Центр речевых технологий".

    Среди зарубежных исследований в области биометрической идентификации следует выделить работы таких специалистов, как P. Phillips, P. Grother, А. Jain, N. Ratha, P. Griffin, D. Maio, D. Maltoni, A. Masnfield, J. Wayman, K. Bowyer, M. Turk, A. Pentland, R. Bolle, A. Ross, J. Daugman, D. Zhang, Karr-Ann Toh, O. Tosi, S. Pankanti, C. Soutar, Tieniu Tan, O. Castillo, P. Melin, J. P. Campbell, J. Garofolo, D. Reynolds, L. Flom, J. Kittler, P. Flynn, R. Chellappa, W. Zhao, J.-C. Junqua, J. F. Bonastre, J. Bigun, K. Brady, D. Burr, B. Dorizzi, S. Prabhakar, J. Conell, G. Doddington, J. Ortega-Garcia, A. Bazen, S. Gerez, R. Plamondon, M. Eleccion, M. Fornefett, J. Wegstein, L. Kersta, L. Harmon, A. Fejfar, T. Vetter, A. G. Kersta, L. D. Harmon, B. G. Sherlock, D. M. Monro, M. Kucken.

    Существующие биометрические системы.

    В настоящее время на рынке предлагается ряд готовых систем и технологий биометрической идентификации и аутентификации личности.

    Например, в области распознавания лиц одними из наиболее продвинутых решений являются следующие.

    Система ZN-Face компании $\textit{ZN Vision Technologies AG}$ сочетает в себе новейшие компьютерные разработки с системой контроля доступа, основанной на автоматическом распознавании лиц. ZN-камера делает снимок человека, стоящего на рубеже контроля, и проверяет его в считанные доли секунды. Специально разработанный модуль оптического фильтра и функция контроля за живым лицом предотвращает любую попытку обмана путем применения фотографий или масок.

    Компьютеризованная база фотоданных ZN-Phantomas может автоматически сравнивать и идентифицировать лица. Для сравнения годится фотография, фоторобот, рисунок или кадр, полученный при видеосъемке. ZN-Phantomas проводит поиск среди сохраненных в памяти изображений, используя систему распознавания лиц, созданную по образу работы человеческого мозга на базе технологии органического видения. Скорость работы системы позволяет просматривать 10 тыс изображений за три минуты. Система может работать со всеми SQL-базами данных, использующими ODBC-протокол (Oracle, Sybase SQL, DB2, Informix).

    Система FaceIT компании $\textit{Identix Inc}$ осуществляет распознавание людей при попадании изображения лица в поле зрения видеокамеры высокого разрешения. Разработки фирмы финансируются госдепартаментом США. Данная система проходит апробацию в аэропортах США. В прессе появлялись сообщения, что результаты тестирования нельзя назвать удовлетворительными, однако контракт с фирмой продолжен, и теперь акцент переносится на идентификацию по фотографиям. госдепартамент США собирается обязать гостей США иметь фото установленного образца, дабы облегчить распознавательным программам работу.

    Из систем, разработанных в России и СНГ, можно рассмотреть продукцию фирмы $\textit{Asia-Software}$. Фирма предлагает FRS SDK - комплект разработчика, предназначенный для построения информационно-поисковых систем, связанных с распознаванием лиц, и ряд систем идентификации по изображениям лиц. Система базируется на алгоритмах распознавания и сравнения изображений. Основой этих алгоритмов является модифицированный метод анализа принципиальных компонент, заключающийся в вычислении максимально декореллированных коэффициентов, характеризующих входные образы человеческих лиц. На вход системы подается оцифрованное видеоизображение. Специальные алгоритмы определяют наличие изображения лица человека, выделяют его, определяют точное расположение зрачков, производят позиционирование и масштабирование. После этого происходит автоматическое кодирование выделенного изображения лица человека с целью определения основных характерных признаков. Размер полученного массива признаков составляет примерно $300$~байт, что позволяет строить идентификационные системы даже на однокристальных ЭВМ.

    Характеристики биометрических систем.

    Показателями надежности биометрических систем могут служить вероятности ошибок первого и второго рода. Ошибки первого рода определяют вероятность ложного отказа (FRR, False Rejection Rate) и возникают при отказе в доступе легальному пользователю системы. Ошибки же второго рода показывают вероятность ложного допуска (FAR, False Acceptance Rate) и появляются при предоставлении доступа постороннему лицу. FRR и FAR связаны обратной зависимостью. Современные биометрические системы имеют очень большой разброс этих характеристик.

    Биометрическую систему также можно характеризовать уровнем равной вероятности ошибок первого и второго рода (EER, Equal Error Rates) - точкой, в которой вероятность ошибки первого рода равна вероятности ошибки второго рода. На основании EER можно делать выводы об относительных достоинствах и недостатках разных биометрических методов. Чем ниже уровень EER, тем выше качество системы.

    Еще один параметр, влияющий на выбор и установку биометрической системы, - пропускная способность. Она характеризует время, которое требуется человеку для взаимодействия с данным биометрическим устройством.

    Сортировать и сравнивать описанные выше биометрические методы по показаниям ошибок первого рода очень сложно, так как они сильно разнятся для одних и тех же методов из-за сильной зависимости от оборудования, на котором они реализованы.

    По показателям ошибок второго рода общая сортировка методов биометрической аутентификации выглядит так (от лучших к худшим):

    1. радужная оболочка глаза, сетчатка глаза;
    2. отпечаток пальца, термография лица, форма ладони;
    3. форма лица, расположение вен на кисти руки и ладони;
    4. подпись;
    5. клавиатурный почерк;
    6. голос.

    Можно сделать вывод, что, с одной стороны, статические методы идентификации существенно лучше динамических, а с другой стороны - существенно дороже.

    Текущее состояние технологии и перспективы дальнейших разработок.

    В настоящий момент общее состояние биометрических технологий в мире еще нельзя признать удовлетворительным. Скорее можно говорить о биометрии как о быстро развивающейся области исследований и приложений, в которой еще не удалось достичь требуемых показателей. Целый ряд серьезных проверок, проведенных в последнее время, показал недостаточную надежность таких систем.

    Например, полицейское управление города Тампа, штат Флорида (США), после двух лет эксплуатации деинсталлировало за бесполезностью программное обеспечение опознания лиц, работавшее совместно с камерами наружного наблюдения. Сеть таких камер позволяла вести надзор за публикой в городском парке развлечений Айбор-сити. Предполагалось, что техника в комплекте с программой для сканирования/опознания лиц, подсоединенной к базе из 30 тысяч известных правонарушителей и сбежавших из дома детей, повысит эффективность работы полиции. Однако за два года система не дала ни единого успешного результата, будь то автоматическое опознание разыскиваемых или арест подозреваемых. Программное обеспечение было предоставлено компанией Identix, одним из ведущих в США поставщиков биометрических технологий опознания по лицу и отпечаткам пальцев.

    Известен отчет японского криптографа Цутомо Мацумото, скомпрометировавшего более десятка систем опознания пользователя по отпечатку пальца. Недавно аналогичное обширное исследование было предпринято немецким компьютерным журналом "c"t". Выводы экспертов однозначны: биометрические системы для потребительского рынка пока не достигли того уровня, когда их можно рассматривать в качестве реальной альтернативы традиционным паролям. Так, систему опознания лиц FaceVACS-Logon немецкой фирмы $\textit{Cognitec}$ удается ввести в заблуждение, просто предъявив фотографию зарегистрированного пользователя. Для обмана более изощренного ПО, анализирующего характерные признаки живого человека (мимические движения лица) может быть успешно применен экран ноутбука, на котором демонстрируется видеоклип с записью лица. Несколько сложнее обмануть систему Authenticam BM-ET100 фирмы $\textit{Panasonic}$ для опознания радужной оболочки глаза, поскольку здесь инфракрасные датчики реагируют не только на характерный узор изображения радужки, но и на иную глубину расположения зрачка. Однако, если проделать небольшое отверстие на месте зрачка в фотоснимке глаза, куда при опознании заглядывает другой человек, систему удается обмануть. Что же касается систем опознания пользователя по отпечатку пальца с помощью емкостного сенсора на мышке или клавиатуре, то здесь самым распространенным способом обмана является повторное "оживление" уже имеющегося отпечатка, оставленного зарегистрированным пользователем. Для "реанимации" остаточного отпечатка иногда бывает достаточно просто подышать на сенсор, либо приложить к нему тонкий полиэтиленовый пакет, наполненный водой. Подобные трюки, в частности, весьма удачно опробованы на мышках ID Mouse фирмы $\textit{Siemens}$, оснащенных емкостным сенсором FingerTIP производства $\textit{Infineon}$. Наконец, "искусственный палец", отлитый в парафиновой форме из силикона, позволил исследователям одолеть все шесть протестированных дактилоскопических систем.

    Однако, несмотря на общую негативную оценку современного состояния биометрических систем идентификации личности, во всем мире наблюдается тенденция к развитию исследований и разработок в области биометрии. При этом одной из основных тенденций последнего времени является постепенный перенос приоритетов с контактных на бесконтактные методы биометрического распознавания. Причиной этого явилось повышение требований к функциональным возможностям автоматических систем безопасности, расположенных в общественных местах (вокзалы, аэропорты, супермаркеты и т. п.), связанные с необходимостью в реальном времени выполнять необходимые действия по установлению личности присутствующих на контролируемой территории людей, причем, зачастую, скрытно, %то есть не только бесконтактно (дистанционно), но %и без специального сотрудничества (специального предъявления биометрических %признаков) со стороны идентифицируемых персон, в сложных условиях, в группе и в толпе. Созданию таких биометрических систем нового поколения препятствуют ряд специфических проблем, пока еще не имеющих адекватного решения.

    Первая группа проблем связана с тем, что системы скрытного наблюдения с целью обеспечения безопасности должны работать в условиях естественного поведения человека, не предъявляющего специально свое лицо и не произносящего заранее известных ключевых фраз. В этом случае еще до решения задачи распознавания необходимо решить задачу обнаружения (определения местоположения, выделения человека в группе), да и сама задача распознавания лица и голоса в неконтролируемых условиях становится существенно сложнее. Вторая группа существующих здесь проблем связана с тем, что в случае задачи обеспечения безопасности (в отличие от задачи обеспечения контроля доступа) нет возможности опереться на сотрудничество идентифицируемой персоны даже на этапе обучения. Поэтому для обучения приходится использовать имеющиеся фрагментарные и разнородные аудио- и видеоматериалы самого различного качества и происхождения. Это еще более усложняет задачу обучения биометрической системы. Наконец, третья группа проблем связана с тем, что получаемые (с учетом перечисленных проблем) вероятности правильного распознавания и ложного обнаружения заданной персоны в естественной обстановке только по лицу или только по голосу оказываются существенно ниже показателей, требуемых для удовлетворительного функционирования ответственных систем обеспечения безопасности и контроля доступа. С этим связана необходимость использовать комплексирование результатов биометрического распознавания, полученного от разных источников информации.

    Именно с решением указанных проблем могут быть связаны существенные прорывы в области биометрических технологий в ближайшие годы.

    Биометрия в широком и узком смысле.

    Таким образом, биометрические технологий идентификации представляют собой быстро развивающееся научно-техническое направление, в результатах которого остро нуждаются такие области применения, как системы охраны и контроля доступа, системы паспортного и визового контроля, системы предупреждения преступлений и идентификации преступников, системы контроля доступа, системы учета и сбора статистики посетителей, системы идентификации удаленных пользователей и пользователей интернета, верификации кредитных карточек, криминалистической экспертизы, контроля времени посещения на предприятиях и т. д.

    Помимо описанных биометрических технологий аутентификации, область "биометрии в широком смысле" включает также ряд приложений, связанных с выделением и измерением различных биологических характеристик человеческого тела, жестов, движений и т. п., предназначенных не для персональной идентификации, а для использования в спортивных, медицинских, телекоммуникационных, развлекательных и других целях.

    Аннотация.

    В статье приведены основные биометрические параметры. Рассмотрены методы идентификации, нашедшие широкое применение в России. Биометрическая идентификация способна решить задачу объединения всех существующих паролей пользователя к одному и применять его повсеместно. Процесс извлечения свойств отпечатка пальцев начинается с оценки качества изображения: вычисляется ориентация бороздок, которая в каждом пикселе отражает направление бороздки. Распознавание лиц - это самый приемлемый обществом метод биометрической идентификации. Идентификации личности по радужной оболочке глаза состоит из получения изображения, на котором локализуется радужная оболочка и составляется её код. В качестве двух основных характеристик любой биометрической системы можно использовать ошибки первого и второго рода. Идентификация на основе рисунка радужной оболочки глаза является одним из самых надёжных биометрических методов. Беcконтактный способ получения данных говорит о простоте использования и возможном внедрении в различные области.


    Ключевые слова: биометрические параметры, идентификация личности, отпечатки пальцев, распознавание лиц, радужная оболочка, биометрическая идентификация, алгоритм, базы данных, биометрические методы, пароль

    10.7256/2306-4196.2013.2.8300


    Дата направления в редакцию:

    24-05-2013

    Дата рецензирования:

    25-05-2013

    Дата публикации:

    1-4-2013

    Abstract.

    The article lists the main biometric parameters. The author reviews methods of identification that are used widely in Russia. Biometric identification helps to solve the problem of unification of all existing user passwords to one and apply it across the board. The process of extracting fingerprint features begins with an assessment of image quality is calculated orientation grooves which each pixel represents the direction of the grooves. Face Detection is the most acceptable method of biometric identification in society. Identification of the iris consists of image acquisition with localization of an iris and then forming a code of the iris. As the two main characteristics of any biometric system it is possible to use Type I and Type II errors. Identification based on the iris pattern of the eye is one of the most reliable biometric methods. Contactless method of obtaining data in this case suggests simplicity of use of this method in various areas.

    Keywords:

    Biometric identification, iris, face recognition, fingerprints, personal identification, biometrics, algorithm, database, biometric methods, password

    Введение

    Человек в современном обществе всё в большей степени нуждаются в обеспечении личной безопасности и безопасности производимых ими действий. Для каждого из нас необходимым атрибутом повседневной жизни становится надёжная авторизация: повсеместное применение банковских карт, сервисов электронной почты, совершение различных операций и пользование услугами - всё это требует идентификации личности. Уже сегодня мы вынуждены вводить десятки паролей, иметь при себе токен или другой идентифицирующий маркер. В такой ситуации остро встаёт вопрос: «А можно ли свести все существующие пароли к одному и применять его повсеместно, не опасаясь кражи или подмены?»

    Биометрические параметры

    Биометрическая идентификация способна решить данную задачу. Распознавание человека по биометрическим данным - это автоматизированный метод идентификации на основе физиологических (являются физическими характеристиками и измеряются в определённые моменты времени) и поведенческих (представляют собой последовательность действий и протекают в течение некоторого периода времени) черт. В таблице 1 перечислены основные из них.

    Таблица 1

    Биометрические параметры

    Применяются часто

    Применяются редко

    Физиологические

    Поведенческие

    Физиологические

    Поведенческие

    1. Отпечатки пальцев

    1. Подпись

    1. Сетчатка глаза

    1. Клав. почерк

    2. Походка

    3. Радужная оболочка

    3. Форма ушей

    4. Геометрия руки

    5. Отражение от кожи

    6. Термограмма

    Подробнее остановимся на трёх, распространённых в России.

    Отпечатки пальцев

    Отпечатки пальцев (рис. 1 а) представляют собой мелкие бороздки на внутренней поверхности ладони и ступни человека. Судебная экспертиза основывается на предположении, что не существует двух одинаковых отпечатков пальцев, принадлежащих разным людям.

    Для сравнения отпечатков эксперты используют множество деталей папиллярных узоров, имеющих следующие черты: конец бороздки, раздвоение бороздки, независимая бороздка, озеро, ответвление, перекрест и другие. Автоматические методы сравнения работают схожим образом. Процесс извлечения свойств отпечатка начинается с оценки качества изображения: вычисляется ориентация бороздок, которая в каждом пикселе отражает направление бороздки. Затем происходит сегментация бороздок и локализации деталей с последующим распознаванием.

    Геометрия лица

    Задача распознавания лиц идёт рука об руку с человеком с незапамятных времён. Паспорт, снабжённый фотографией, стал повсеместным и главным документом, удостоверяющим личность человека. Это самый приемлемый обществом метод биометрической идентификации. Простота фиксирования данного биометрического признака позволила составить большие базы данных: фотографии в правоохранительных органах, видеозаписи камер наблюдения, социальные сети и так далее.

    Источником получения изображения могут быть: оцифровке документы; камеры наблюдения; трёхмерные изображения; снимки в инфракрасном спектре.

    На полученном изображении локализуется лицо (рис. 1 б), затем применяется один из двух методов: внешний вид лица и геометрия лица. Предпочтительным является метод, основанный на анализе геометрии лица, история распознавания которого насчитывает тридцатилетнюю историю.

    Радужная оболочка глаза

    Радужная оболочка - цветная часть глаза между склерой и зрачком. Является, как и отпечатки пальцев фенотипической особенностью человека и развивается в течении первых месяцев беременности.

    Идея идентификации личности по радужной оболочке глаза была предложена офтальмологами ещё в 1936 году. Позднее, идея нашла своё отражение в некоторых фильмах. Например, в 1984 году был снят фильм про Джеймса Бонда «Никогда не говори никогда». И лишь в 1994 году появился первый автоматизированный алгоритм распознавания радужной оболочки глаза, разработанный математиком Джоном Даугманом. Алгоритм был запатентован и до сих пор лежит в основе систем распознавания радужной оболочки.

    Устройство по захвату изображения глаза, которое будет удобным для пользователя и незаметным, является одной из проблем. Ведь при этом оно должно считывать рисунок радужной оболочки не зависимо от условий освещения. Есть несколько подходов. Первый из них базируется на поиске лица и глаз, затем другая камера с увеличительным объективом получает высококачественное изображение радужной оболочки. Второй - требует, чтобы глаз человека находился внутри определённой области наблюдений одной камеры.

    На полученном изображении локализуется радужная оболочка и составляется её код (рис. 1 в). Даугман использовал двумерный фильтр Габора. Дополнительно создаётся маска, где изображение зашумлено (области наложения ресниц и век), которая накладывается на исходный код радужной оболочки. Для идентификации вычисляется расстояние Хэмминга (разница в битах между двумя шаблонами радужных оболочек), которое для одинаковых радужных оболочек будет наименьшим.

    Рисунок 1. Примеры биометрических параметров

    Статистические характеристики

    В качестве двух основных характеристик любой биометрической системы можно использовать ошибки первого и второго рода. В области биометрии наиболее устоявшиеся понятия - FAR (False Acceptance Rate) и FRR(False Rejection Rate). FAR характеризует вероятность ложного совпадения биометрических характеристик двух людей. FRR - вероятность отказа доступа человеку, имеющего допуск.

    В таблице 2 приведены средние показатели для различных биометрических систем

    Таблица 2

    Характеристики биометрических систем

    Следует отметить, что данные показатели варьируются в зависимости от используемых биометрических баз данных и применяемых алгоритмов, однако их качественное соотношение остаётся примерно одним. Анализируя эти данные, можно придти к выводу, что идентификация на основе рисунка радужной оболочки глаза является одним из самых надёжных биометрических методов. Безконтактный способ получения данных говорит о простоте использования и возможном внедрении в различные области.

    Андрей Борзенко

    Чтобы установить личность задержанного,
    полицейскому было достаточно
    просто заглянуть ему в глаза.
    Из газет

    По мере развития компьютерных сетей и расширения сфер автоматизации ценность информации неуклонно возрастает. Государственные секреты, наукоемкие ноу-хау, коммерческие, юридические и врачебные тайны все чаще доверяются компьютеру, который, как правило, подключен к локальным и корпоративным сетям. Популярность глобальной сети Интернет, с одной стороны, открывает огромные возможности для электронной коммерции, но, с другой стороны, создает потребность в более надежных средствах безопасности для защиты корпоративных данных от доступа извне. В настоящее время все больше компаний сталкиваются с необходимостью предотвратить несанкционированный доступ к своим системам и защитить транзакции в электронном бизнесе.

    Практически до конца 90-х годов основным способом персонификации пользователя было указание его сетевого имени и пароля. Справедливости ради нужно отметить, что подобного подхода по-прежнему придерживаются во многих учреждениях и организациях. Опасности, связанные с использованием пароля, хорошо известны: пароли забывают, хранят в неподходящем месте, наконец, их могут просто украсть. Некоторые пользователи записывают пароль на бумаге и держат эти записи рядом со своими рабочими станциями. Как сообщают группы информационных технологий многих компаний, большая часть звонков в службу поддержки связана с забытыми или утратившими силу паролями.

    Известно, что систему можно обмануть, представившись чужим именем. Для этого необходимо лишь знать некую идентифицирующую информацию, которой, с точки зрения системы безопасности, обладает один-единственный человек. Злоумышленник, выдав себя за сотрудника компании, получает в свое распоряжение все ресурсы, доступные данному пользователю в соответствии с его полномочиями и должностными обязанностями. Результатом могут стать различные противоправные действия, начиная от кражи информации и заканчивая выводом из строя всего информационного комплекса.

    Разработчики традиционных устройств идентификации уже столкнулись с тем, что стандартные методы во многом устарели. Проблема, в частности, состоит в том, что общепринятое разделение методов контроля физического доступа и контроля доступа к информации более несостоятельно. Ведь для получения доступа к серверу иногда совсем не обязательно входить в помещение, где он стоит. Причиной тому - ставшая всеобъемлющей концепция распределенных вычислений, объединяющая и технологию клиент-сервер, и Интернет. Для решения этой проблемы требуются радикально новые методы, основанные на новой идеологии. Проведенные исследования показывают, что ущерб в случаях несанкционированного доступа к данным компаний может составлять миллионы долларов.

    Есть ли выход из этой ситуации? Оказывается, есть, и уже давно. Просто для доступа к системе нужно применять такие методы идентификации, которые не работают в отрыве от их носителя. Этому требованию отвечают биометрические характеристики человеческого организма. Современные биометрические технологии позволяют идентифицировать личность по физиологическим и психологическим признакам. Кстати, биометрия известна человечеству очень давно - еще древние египтяне использовали идентификацию по росту.

    Основы биометрической идентификации

    Главная цель биометрической идентификации заключается в создании такой системы регистрации, которая крайне редко отказывала бы в доступе легитимным пользователям и в то же время полностью исключала несанкционированный вход в компьютерные хранилища информации. По сравнению с паролями и карточками такая система обеспечивает гораздо более надежную защиту: ведь собственное тело нельзя ни забыть, ни потерять. Биометрическое распознавание объекта основано на сравнении физиологических или психологических особенностей этого объекта с его характеристиками, хранящимися в базе данных системы. Подобный процесс постоянно происходит в мозгу человека, позволяя узнавать, например, своих близких и отличать их от незнакомых людей.

    Биометрические технологии можно разделить на две большие категории - физиологические и психологические (поведенческие). В первом случае анализируются такие признаки, как черты лица, структура глаза (сетчатки или радужной оболочки), параметры пальцев (папиллярные линии, рельеф, длина суставов и т.д.), ладонь (ее отпечаток или топография), форма руки, рисунок вен на запястье или тепловая картина. Психологические характеристики - это голос человека, особенности его подписи, динамические параметры письма и особенности ввода текста с клавиатуры.

    На выбор метода, наиболее подходящего в той или иной ситуации, влияет целый ряд факторов. Предлагаемые технологии отличаются по эффективности, причем их стоимость в большинстве случаев прямо пропорциональна уровню надежности. Так, применение специализированной аппаратуры иной раз повышает стоимость каждого рабочего места на тысячи долларов.

    Физиологические особенности, например, папиллярный узор пальца, геометрия ладони или рисунок (модель) радужной оболочки глаза - это постоянные физические характеристики человека. Данный тип измерений (проверки) практически неизменен, так же, как и сами физиологические характеристики. Поведенческие же характеристики, например, подпись, голос или клавиатурный почерк, находятся под влиянием как управляемых действий, так и менее управляемых психологических факторов. Поскольку поведенческие характеристики могут изменяться с течением времени, зарегистрированный биометрический образец должен при каждом использовании обновляться. Биометрия, основанная на поведенческих характеристиках, дешевле и представляет меньшую угрозу для пользователей; зато идентификация личности по физиологическим чертам более точна и дает большую безопасность. В любом случае оба метода обеспечивают значительно более высокий уровень идентификации, чем пароли или карты.

    Важно отметить, что все биометрические средства аутентификации в той или иной форме используют статистические свойства некоторых качеств индивида. Это означает, что результаты их применения носят вероятностный характер и будут изменяться от раза к разу. Кроме того, все подобные средства не застрахованы от ошибок аутентификации. Существует два рода ошибок: ложный отказ (не признали своего) и ложный допуск (пропустили чужого). Надо сказать, что тема эта в теории вероятностей хорошо изучена еще со времен развития радиолокации. Влияние ошибок на процесс аутентификации оценивается с помощью сравнения средних вероятностей соответственно ложного отказа и ложного допуска. Как показывает практика, эти две вероятности связаны обратной зависимостью, т.е. при попытке ужесточить контроль повышается вероятность не пустить в систему своего, и наоборот. Таким образом, в каждом случае необходимо искать некий компромисс. Тем не менее, даже по самым пессимистичным оценкам экспертов, биометрия выигрывает при всех сравнениях, поскольку она значительно надежнее, чем другие существующие методы аутентификации.

    Кроме эффективности и цены, компаниям следует учитывать также реакцию служащих на биометрические средства. Идеальная система должна быть простой в применении, быстрой, ненавязчивой, удобной и приемлемой с социальной точки зрения. Однако ничего идеального в природе нет, и каждая из разработанных технологий лишь частично соответствует всему набору требований. Но даже самые неудобные и непопулярные средства (например, идентификация по сетчатке, которой пользователи всячески стараются избежать, защищая свои глаза) приносят нанимателю несомненную пользу: они демонстрируют должное внимание компании к вопросам безопасности.

    Развитие биометрических устройств идет по нескольким направлениям, но общие для них черты - это непревзойденный на сегодня уровень безопасности, отсутствие традиционных недостатков парольных и карточных систем защиты и высокая надежность. Успехи биометрических технологий связаны пока главным образом с организациями, где они внедряются в приказном порядке, например, для контроля доступа в охраняемые зоны или идентификации лиц, привлекших внимание правоохранительных органов. Корпоративные пользователи, похоже, еще не осознали потенциальных возможностей биометрии в полной мере. Часто менеджеры компаний не рискуют развертывать у себя биометрические системы, опасаясь, что из-за возможных неточностей в измерениях пользователи будут получать отказы в доступе, на который у них есть права. Тем не менее новые технологии все активнее проникают на корпоративный рынок. Уже сегодня существуют десятки тысяч компьютеризованных мест, хранилищ, исследовательских лабораторий, банков крови, банкоматов, военных сооружений, доступ к которым контролируется устройствами, сканирующими уникальные физиологические или поведенческие характеристики индивидуума.

    Методы аутентификации

    Как известно, аутентификация подразумевает проверку подлинности субъекта, которым в принципе может быть не только человек, но и программный процесс. Вообще говоря, аутентификация индивидов возможна за счет предъявления информации, хранящейся в различной форме. Это может быть:

    • пароль, личный номер, криптографический ключ, сетевой адрес компьютера в сети;
    • смарт-карта, электронный ключ;
    • внешность, голос, рисунок радужной оболочки глаз, отпечатки пальцев и другие биометрические характеристики пользователя.

    Аутентификация позволяет обоснованно и достоверно разграничить права доступа к информации, находящейся в общем пользовании. Однако, с другой стороны, возникает проблема обеспечения целостности и достоверности этой информации. Пользователь должен быть уверен, что получает доступ к информации из заслуживающего доверия источника и что данная информации не модифицировалась без соответствующих санкций.

    Поиск совпадения "один к одному" (по одному атрибуту) называется верификацией. Этот способ отличается высокой скоростью и предъявляет минимальные требования к вычислительной мощности компьютера. А вот поиск "один ко многим" носит название идентификации. Реализовать подобный алгоритм обычно не только сложно, но и дорого. Сегодня на рынок выходят биометрические устройства, использующие для верификации и идентификации пользователей компьютеров такие индивидуальные характеристики человека, как отпечатки пальцев, черты лица, радужную оболочку и сетчатку глаза, форму ладони, особенности голоса, речи и подписи. На стадии тестирования и опытной эксплуатации находятся системы, позволяющие выполнять аутентификацию пользователей по тепловому полю лица, рисунку кровеносных сосудов руки, запаху тела, температуре кожи и даже по форме ушей.

    Любая биометрическая система позволяет распознавать некий шаблон и устанавливать аутентичность конкретных физиологических или поведенческих характеристик пользователя. Логически биометрическую систему можно разделить на два модуля: модуль регистрации и модуль идентификации. Первый отвечает за то, чтобы обучить систему идентифицировать конкретного человека. На этапе регистрации биометрические датчики сканируют необходимые физиологические или поведенческие характеристики человека и создают их цифровое представление. Специальный модуль обрабатывает это представление с тем, чтобы выделить характерные особенности и сгенерировать более компактное и выразительное представление, называемое шаблоном. Для изображения лица такими характерными особенностями могут стать размер и относительное расположение глаз, носа и рта. Шаблон для каждого пользователя хранится в базе данных биометрической системы.

    Модуль идентификации отвечает за распознавание человека. На этапе идентификации биометрический датчик снимает характеристики человека, которого нужно идентифицировать, и преобразует эти характеристики в тот же цифровой формат, в котором хранится шаблон. Полученный шаблон сравнивается с хранимым, чтобы определить, соответствуют ли эти шаблоны друг другу.

    Например, в ОС Microsoft Windows для аутентификации пользователя требуется два объекта - имя пользователя и пароль. При использовании в процессе аутентификации отпечатков пальцев имя пользователя вводится для регистрации, а отпечаток пальца заменяет пароль (рис. 1). Эта технология использует имя пользователя в качестве указателя для получения учетной записи пользователя и проверки соответствия "один к одному" между шаблоном считанного при регистрации отпечатка и шаблоном, ранее сохраненным для данного имени пользователя. Во втором случае введенный при регистрации шаблон отпечатка пальца необходимо сопоставить со всем набором сохраненных шаблонов.

    При выборе способа аутентификации имеет смысл учитывать несколько основных факторов:

    • ценность информации;
    • стоимость программно-аппаратного обеспечения аутентификации;
    • производительность системы;
    • отношение пользователей к применяемым методам аутентификации;
    • специфику (предназначение) защищаемого информационного комплекса.

    Очевидно, что стоимость, а следовательно, качество и надежность средств аутентификации должны быть напрямую связаны с важностью информации. Кроме того, повышение производительности комплекса, как правило, также сопровождается его удорожанием.

    Отпечатки пальцев

    В последние годы процесс идентификации личности по отпечатку пальца обратил на себя внимание как биометрическая технология, которая, вполне вероятно, будет наиболее широко использоваться в будущем. По оценкам Gartner Group (http://www.gartnergroup.com), данная технология доминирует на корпоративном рынке и в ближайшее время конкуренцию ей может составить лишь технология опознавания по радужной оболочке глаза.

    Правительственные и гражданские организации во всем мире уже давно используют отпечатки пальцев в качестве основного метода установления личности. Кроме того, отпечатки - это наиболее точная, дружественная к пользователю и экономичная биометрическая характеристика для применения в компьютерной системе идентификации. Данной технологией в США пользуются, например, отделы транспортных средств администраций ряда штатов, MasterCard, ФБР, Секретная служба, Агентство национальной безопасности, министерства финансов и обороны и т.д. Устраняя потребность в паролях для пользователей, технология распознавания отпечатков пальцев сокращает число обращений в службу поддержки и снижает расходы на сетевое администрирование.

    Обычно системы распознавания отпечатков пальцев разделяют на два типа: для идентификации - AFIS (Automatic Fingerprint Identification Systems) и для верификации. В первом случае используются отпечатки всех десяти пальцев. Подобные системы находят широкое применение в судебных органах. Устройства верификации обычно оперируют с информацией об отпечатках одного, реже нескольких пальцев. Сканирующие устройства бывают, как правило, трех типов: оптические, ультразвуковые и на основе микрочипа.

    Преимущества доступа по отпечатку пальца - простота использования, удобство и надежность. Известны два основополагающих алгоритма распознавания отпечатков пальцев: по отдельным деталям (характерным точкам) и по рельефу всей поверхности пальца. Соответственно в первом случае устройство регистрирует только некоторые участки, уникальные для конкретного отпечатка, и определяет их взаимное расположение. Во втором случае обрабатывается изображение всего отпечатка. В современных системах все чаще используется комбинация этих двух способов. Это позволяет избежать недостатков обоих и повысить достоверность идентификации. Единовременная регистрация отпечатка пальца человека на оптическом сканере занимает немного времени. Крошечная CCD-камера, выполненная в виде отдельного устройства или встроенная в клавиатуру, делает снимок отпечатка пальца. Затем с помощью специальных алгоритмов полученное изображение преобразуется в уникальный "шаблон" - карту микроточек отпечатка, которые определяются имеющимися в нем разрывами и пересечениями линий. Этот шаблон (а не сам отпечаток) затем шифруется и записывается в базу данных для аутентификации сетевых пользователей. В одном шаблоне хранится от нескольких десятков до сотен микроточек. При этом пользователи могут не беспокоиться о неприкосновенности своей частной жизни, поскольку сам отпечаток пальца не сохраняется и не может быть воссоздан по микроточкам.

    Преимущество ультразвукового сканирования - возможность определения требуемых характеристик на грязных пальцах и даже через тонкие резиновые перчатки. Стоит отметить, что современные системы распознавания нельзя обмануть даже свежеотрубленными пальцами (микрочип измеряет физические параметры кожи). Разработкой подобных систем занимаются более 50 различных производителей.

    Использование отпечатка пальца для идентификации личности - самый удобный из всех биометрических методов. Вероятность ошибки при идентификации пользователя намного меньше в сравнении с другими методами биометрии. Качество распознавания отпечатка и возможность его правильной обработки алгоритмом сильно зависят от состояния поверхности пальца и его положения относительно сканирующего элемента. Различные системы предъявляют разные требования к этим двум параметрам. Характер требований зависит, в частности, от применяемого алгоритма. К примеру, распознавание по характерным точкам дает сильный уровень шума при плохом состоянии поверхности пальца. Распознавание по всей поверхности лишено этого недостатка, но для него требуется очень точно размещать палец на сканирующем элементе. Устройство идентификации по отпечатку пальца (сканер, рис. 2) не требует много места и может быть вмонтировано в указательный манипулятор (мышь) или клавиатуру.

    Геометрия лица

    Идентификация человека по лицу в обычной жизни, без всяких сомнений, - самый распространенный способ распознавания. Что касается ее технической реализации, она представляет собой более сложную (с математической точки зрения) задачу, нежели распознавание отпечатков пальцев, и, кроме того, требует более дорогостоящей аппаратуры (нужна цифровая видео- или фотокамера и плата захвата видеоизображения). У этого метода есть один существенный плюс: для хранения данных об одном образце идентификационного шаблона требуется совсем немного памяти. А все потому, что, как выяснилось, человеческое лицо можно "разобрать" на относительно небольшое количество участков, неизменных у всех людей. Например, для вычисления уникального шаблона, соответствующего конкретному человеку, требуется всего от 12 до 40 характерных участков.

    Обычно камера устанавливается на расстоянии в несколько десятков сантиметров от объекта. Получив изображение, система анализирует различные параметры лица (например, расстояние между глазами и носом). Большинство алгоритмов позволяет компенсировать наличие у исследуемого индивида очков, шляпы и бороды. Для этой цели обычно используется сканирование лица в инфракрасном диапазоне. Было бы наивно предполагать, что подобные системы дают очень точный результат. Несмотря на это, в ряде стран они довольно успешно используются для верификации кассиров и пользователей депозитных сейфов.

    Геометрия руки

    Наряду с системами для оценки геометрии лица существует оборудование для распознавания очертаний ладоней рук. При этом оценивается более 90 различных характеристик, включая размеры самой ладони (три измерения), длину и ширину пальцев, очертания суставов и т.п. В настоящее время идентификация пользователей по геометрии руки используется в законодательных органах, международных аэропортах, больницах, иммиграционных службах и т.д. Преимущества идентификации по геометрии ладони сравнимы с плюсами идентификации по отпечатку пальца в вопросе надежности, хотя устройство для считывания отпечатков ладоней занимает больше места.

    Радужная оболочка глаза

    Довольно надежное распознавание обеспечивают системы, анализирующие рисунок радужной оболочки человеческого глаза. Дело в том, что эта характеристика довольно стабильна, не меняется практически в течение всей жизни человека, невосприимчива к загрязнению и ранам. Заметим также, что радужки правого и левого глаза по рисунку существенно различаются.

    Обычно различают активные и пассивные системы распознавания. В системах первого типа пользователь должен сам настроить камеру, передвигая ее для более точной наводки. Пассивные системы проще в использовании, поскольку камера в них настраивается автоматически. Высокая надежность этого оборудования позволяет применять его даже в исправительных учреждениях.

    Преимущество сканеров для радужной оболочки состоит в том, что они не требуют, чтобы пользователь сосредоточился на цели, потому что образец пятен на радужной оболочке находится на поверхности глаза. Фактически видеоизображение глаза можно отсканировать даже на расстоянии менее метра, благодаря чему сканеры для радужной оболочки пригодны для банкоматов.

    Сетчатка глаза

    Метод идентификации по сетчатке глаза получил практическое применение сравнительно недавно - где-то в середине 50-х годов теперь уже прошедшего XX века. Именно тогда было доказано, что даже у близнецов рисунок кровеносных сосудов сетчатки не совпадает. Для того, чтобы зарегистрироваться в специальном устройстве, достаточно смотреть в глазок камеры менее минуты. За это время система успевает подсветить сетчатку и получить отраженный сигнал. Для сканирования сетчатки используется инфракрасное излучение низкой интенсивности, направленное через зрачок к кровеносным сосудам на задней стенке глаза. Из полученного сигнала выделяется несколько сотен первоначальных характерных точек, информация о которых усредняется и сохраняется в кодированном файле. К недостаткам подобных систем следует в первую очередь отнести психологический фактор: не всякий человек отважится посмотреть в неведомое темное отверстие, где что-то светит в глаз. К тому же надо следить за положением глаза относительно отверстия, поскольку подобные системы, как правило, чувствительны к неправильной ориентации сетчатки. Сканеры для сетчатки глаза получили большое распространение при организации доступа к сверхсекретным системам, поскольку гарантируют один из самых низких процентов отказа в доступе зарегистрированных пользователей и почти нулевой процент ошибок.

    Голос и речь

    Многие фирмы выпускают программное обеспечение, способное идентифицировать человека по голосу. Здесь оцениваются такие параметры, как высота тона, модуляция, интонация и т.п. В отличие от распознавания внешности, данный метод не требует дорогостоящей аппаратуры - достаточно лишь звуковой платы и микрофона.

    Идентификация по голосу удобный, но не столь надежный способ, как другие биометрические методы. Например, у простуженного человека могут возникнуть трудности при использовании таких систем. Голос формируется из комбинации физиологических и поведенческих факторов, поэтому основная проблема, связанная с этим биометрическим подходом, - точность идентификации. В настоящее время идентификация по голосу используется для управления доступом в помещение средней степени безопасности.

    Подпись

    Как оказалось, подпись - такой же уникальный атрибут человека, как и его физиологические характеристики. Кроме того, это и более привычный для любого человека метод идентификации, поскольку он, в отличие от снятия отпечатков пальцев, не ассоциируется с криминальной сферой. Одна из перспективных технологий аутентификации основана на уникальности биометрических характеристик движения человеческой руки во время письма. Обычно выделяют два способа обработки данных о подписи: простое сравнение с образцом и динамическую верификацию. Первый весьма ненадежен, так как основан на обычном сравнении введенной подписи с хранящимися в базе данных графическими образцами. Из-за того, что подпись не может быть всегда одинаковой, этот метод дает большой процент ошибок. Способ динамической верификации требует намного более сложных вычислений и позволяет в реальном времени фиксировать параметры процесса подписи, такие как скорость движения руки на разных участках, сила давления и длительность различных этапов подписи. Это дает гарантии того, что подпись не сможет подделать даже опытный графолог, поскольку никто не в состоянии в точности скопировать поведение руки владельца подписи.

    Пользователь, используя стандартный дигитайзер и ручку, имитирует свою обычную подпись, а система считывает параметры движения и сверяет их с теми, что были заранее введены в базу данных. При совпадении образа подписи с эталоном система прикрепляет к подписываемому документу информацию, включающую имя пользователя, адрес его электронной почты, должность, текущее время и дату, параметры подписи, содержащие несколько десятков характеристик динамики движения (направление, скорость, ускорение) и другие. Эти данные шифруются, затем для них вычисляется контрольная сумма, и далее все это шифруется еще раз, образуя так называемую биометрическую метку. Для настройки системы вновь зарегистрированный пользователь от пяти до десяти раз выполняет процедуру подписания документа, что позволяет получить усредненные показатели и доверительный интервал. Впервые данную технологию использовала компания PenOp.

    Идентификацию по подписи нельзя использовать повсюду - в частности, этот метод не подходит для ограничения доступа в помещения или для доступа в компьютерные сети. Однако в некоторых областях, например в банковской сфере, а также всюду, где происходит оформление важных документов, проверка правильности подписи может стать наиболее эффективным, а главное -- необременительным и незаметным способом. До сих пор финансовое сообщество не спешило принимать автоматизированные методы идентификации подписи для кредитных карточек и проверки заявления, потому что подписи все еще слишком легко подделать. Это препятствует внедрению идентификации личности по подписи в высокотехнологичные системы безопасности.

    Перспективы

    Хотелось бы отметить, что наибольшую эффективность защиты обеспечивают системы, в которых биометрические системы сочетаются с другими аппаратными средствами аутентификации, например смарт-картами. Комбинируя различные способы биометрической и аппаратной аутентификации, можно получить весьма надежную систему защиты (что косвенно подтверждается большим интересом, который проявляют к этим технологиям ведущие производители).

    Заметим, что смарт-карты образуют один из самых крупных и быстрорастущих сегментов рынка электронных продуктов для пользователей. По прогнозам фирмы Dataquest (http://www.dataquest.com), к следующему году объем продаж смарт-карт превысит полмиллиарда долларов. Применение смарт-карт требует наличия на каждом рабочем месте специального считывающего (терминального) устройства, подключенного к компьютеру, которое исключает необходимость вовлечения пользователя в процесс взаимодействия карты и сервера аутентификации. Собственно смарт-карта обеспечивает два уровня аутентификации. Для того чтобы система заработала, пользователь должен вставить смарт-карту в считывающее устройство, а затем правильно ввести личный идентификационный номер. На российском рынке комплексные решения, сочетающие идентификацию по отпечаткам пальцев и использование смарт-карт (рис. 3), предлагают, например, компании Compaq (http://www.compaq.ru) и Fujitsu-Siemens (http://www.fujitsu-siemens.ru).

    Рис. 3. Комбинированная система со сканером и смарт-картой.

    Кроме крупных компьютерных компаний, таких как Fujitsu-Siemens, Motorola, Sony, Unisys, разработкой биометрических технологий в настоящее время занимаются преимущественно небольшие частные компании, которые объединились в консорциум по биометрии - Biometric Consortium (http://www.biometrics.org). Одно из наиболее обнадеживающих свидетельств того, что биометрия наконец вливается в основное русло ИТ-индустрии, - создание интерфейса прикладного программирования BioAPI (Biometrics API). За этой разработкой стоит консорциум производителей, сформированный в 1998 г. корпорациями Compaq, IBM, Identicator Technology, Microsoft, Miros и Novell специально для выработки стандартизованной спецификации, поддерживающей существующие биометрические технологии, которую можно было бы внедрить в операционные системы и прикладное ПО. В консорциум BioAPI сегодня входят 78 крупных государственных и частных компаний.

    Теперь корпоративные клиенты могут использовать биометрические продукты в рамках стандартных компьютерных и сетевых технологий, избежав, таким образом, значительных материальных и временных затрат на интеграцию всех компонентов системы. Стандартные API дают доступ к широкому спектру биометрических устройств и программных продуктов, а также позволяют совместно применять продукты нескольких поставщиков.

    В этом году правительство США уже объявило о внедрении в государственных учреждениях открытого стандарта BioAPI. Нововведения коснутся в первую очередь министерства обороны США, где для нескольких миллионов военных и гражданских сотрудников предполагается ввести новые смарт-карты, хранящие отпечатки пальцев и образец подписи владельца.

    По мнению ряда аналитиков, биометрические технологии развиваются пока достаточно медленно, однако недалеко то время, когда не только настольные и портативные компьютеры, но и мобильные телефоны будут немыслимы без подобных средств аутентификации. Большие ожидания связаны с поддержкой перспективных биометрических технологий операционной системой Microsoft Windows.