Радиус работы ультразвукового дальномера. Лазерный дальномер какой лучше: обзор моделей и по какой цене можно купить. Лазерный дальномер какой фирмы выбрать

Дальномер — это устройство для измерения расстояния до некоторого предмета. Дальномер помогает роботам в разных ситуациях. Простой колесный робот может использовать этот прибор для обнаружения препятствий. Летающий дрон использует дальномер для баражирования над землей на заданной высоте. С помощью дальномера можно даже построить карту помещения, применив специальный алгоритм SLAM.

1. Принцип действия

На этот раз мы разберем работу одного из самых популярных датчиков — ультразвукового (УЗ) дальномера. Существует много разных модификаций подобных устройств, но все они работают по принципу измерения времени прохождения отраженного звука. То есть датчик отправляет звуковой сигнал в заданном направлении, затем ловит отраженное эхо и вычисляет время полета звука от датчика до препятствия и обратно. Из школьного курса физики мы знаем, что скорость звука в некоторой среде величина постоянная, но зависящая от плотности среды. Зная скорость звука в воздухе и время полета звука до цели, мы можем рассчитать пройденное звуком расстояние по формуле: s = v*t где v — скорость звука в м/с, а t — время в секундах. Скорость звука в воздухе, кстати, равна 340.29 м/с. Чтобы справиться со своей задачей, дальномер имеет две важные конструктивные особенности. Во-первых, чтобы звук хорошо отражался от препятствий, датчик испускает ультразвук с частотой 40 кГц. Для этого в датчике имеется пьезокерамический излучатель, который способен генерировать звук такой высокой частоты. Во-вторых, излучатель устроен таким образом, что звук распространяется не во все стороны (как это бывает у обычных динамиков), а в узком направлении. На рисунке представлена диаграмма направленности типичного УЗ дальномера. Как видно на диаграмме, угол обзора самого простого УЗ дальномера составляет примерно 50-60 градусов. Для типичного варианта использования, когда датчик детектирует препятствия перед собой, такой угол обзора вполне пригоден. Ультразвук сможет обнаружить даже ножку стула, тогда как лазерный дальномер, к примеру, может её не заметить. Если же мы решим сканировать окружающее пространство, вращая дальномер по кругу как радар, УЗ дальномер даст нам очень неточную и шумную картину. Для таких целей лучше использовать как раз лазерный дальномер. Также следует отметить два серьезных недостатка УЗ дальномера. Первый заключается в том, что поверхности имеющие пористую структуру хорошо поглощают ультразвук, и датчик не может измерить расстояние до них. Например, если мы задумаем измерить расстояние от мультикоптера до поверхности поля с высокой травой, то скорее всего получим очень нечеткие данные. Такие же проблемы нас ждут при измерении дистанции до стены покрытой поролоном. Второй недостаток связан со скоростью звуковой волны. Эта скорость недостаточно высока, чтобы сделать процесс измерения более частым. Допустим, перед роботом есть препятствие на удалении 4 метра. Чтобы звук слетал туда и обратно, потребуется целых 24 мс. Следует 7 раз отмерить, прежде чем ставить УЗ дальномер на летающих роботов.

2. Ультразвуковой дальномер HC-SR04

В этом уроке мы будем работать с датчиком HC-SR04 и контроллером Ардуино Уно. Этот популярный дальномер умеет измерять расстояние от 1-2 см до 4-6 метров. При этом, точность измерения составляет 0.5 — 1 см. Встречаются разные версии одного и того же HC-SR04. Одни работают лучше, другие хуже. Отличить их можно по рисунку платы на обратной стороне. Версия, которая работает хорошо выглядит так:

А вот версия, которая может давать сбои:

3. Подключение HC-SR04

Датчик HC-SR04 имеет четыре вывода. Кроме земли (Gnd) и питания (Vcc) еще есть Trig и Echo. Оба этих вывода цифровые, так что подключаем из к любым выводам Ардуино Уно:
HC-SR04 GND VCC Trig Echo
Arduino Uno GND +5V 3 2
Принципиальная схема устройства Внешний вид макета

4. Программа

Итак, попробуем приказать датчику отправить зондирующий ультразвуковой импульс, а затем зафиксируем его возвращение. Посмотрим как выглядит временная диаграмма работы HC-SR04.
На диаграмме видно, что для начала измерения нам необходимо сгенерировать на выводе Trig положительный импульс длиной 10 мкс. Вслед за этим, датчик выпустит серию из 8 импульсов и поднимет уровень на выводе Echo , перейдя при этом в режим ожидания отраженного сигнала. Как только дальномер почувствует, что звук вернулся, он завершит положительный импульс на Echo . Получается, что нам нужно сделать всего две вещи: создать импульс на Trig для начала измерения, и замерить длину импульса на Echo, чтобы потом вычислить дистанцию по нехитрой формуле. Делаем. int echoPin = 2; int trigPin = 3; void setup() { Serial.begin (9600); pinMode(trigPin, OUTPUT); pinMode(echoPin, INPUT); } void loop() { int duration, cm; digitalWrite(trigPin, LOW); delayMicroseconds(2); digitalWrite(trigPin, HIGH); delayMicroseconds(10); digitalWrite(trigPin, LOW); duration = pulseIn(echoPin, HIGH); cm = duration / 58; Serial.print(cm); Serial.println(" cm"); delay(100); } Функция pulseIn замеряет длину положительного импульса на ноге echoPin в микросекундах. В программе мы записываем время полета звука в переменную duration. Как мы уже выяснили ранее, нам потребуется умножить время на скорость звука: s = duration * v = duration * 340 м/с Переводим скорость звука из м/с в см/мкс: s = duration * 0.034 м/мкс Для удобства преобразуем десятичную дробь в обыкновенную: s = duration * 1/29 = duration / 29 А теперь вспомним, что звук прошел два искомых расстояния: до цели и обратно. Поделим всё на 2: s = duration / 58 Теперь мы знаем откуда взялось число 58 в программе! Загружаем программу на Ардуино Уно и открываем монитор последовательного порта. Попробуем теперь наводить датчик на разные предметы и смотреть в мониторе рассчитанное расстояние.

Задания

Теперь, когда мы умеем вычислять расстояние с помощью дальномера, сделаем несколько полезных устройств.
  1. Строительный дальномер. Программа каждые 100мс измеряет расстояние с помощью дальномера и выводит результат на символьный ЖК дисплей. Для удобства полученное устройство можно поместить в небольшой корпус и запитать от батареек.
  2. Ультразвуковая трость. Напишем программу, которая будет «пищать» зуммером с различной частотой, в зависимости от измеренного расстояния. Например, если расстояние до препятствия более трех метров — зуммер издает звук раз в пол секунды. При расстоянии 1 метр — раз в 100мс. Менее 10см — пищит постоянно.

Заключение

Ультразвуковой дальномер — простой в использовании, дешевый и точный датчик, который отлично выполняет свою функцию на тысячах роботов. Как мы выяснили из урока, у датчика есть недостатки, которые следует учитывать при постройке робота. Хорошим решением может стать совместное использование ультразвукового дальномера в паре с лазерным. В таком случае, они будут нивелировать недостатки друг друга.

Васильева Мария 108

В прошлое уже давно ушло неблагодарное занятие, такое как измерение обычной рулеткой расстояния между объектами или стенами в помещении. Сегодня нам в этом поможет современное устройство точного и быстрого бесконтактного измерения расстояния – дальномер . Это устройство используются в строительстве и ремонте, в геодезии, на охоте, на рыбалке, при фотографировании и бывает следующих типов: ультразвуковой дальномер и лазерный дальномер.

Дальномер ультразвуковой подобно эхолоту посылает и улавливает отражение направленных пучков звуковых волн в ультразвуковом диапазоне (примерно 40 кГц), анализирует время на возврат звука и по этим данным вычисляет расстояние между удаленными предметами. Минусами таких типов приборов являются: небольшое расстояние измерения до 35 метров, объект для отражения звукового сигнала должен быть достаточно крупных размеров, ультразвук может гаснуть при прохождении препятствий в виде тканевых материалов. Тем не менее, ультразвуковые дальномеры более распространены, потому что менее дорогие, чем лазерные дальномеры.

Лазерный дальномер анализирует не время отражения звукового сигнала, а сравнивает фазы отправленного и отраженного световых сигналов. Точность измерения расстояния у лазерного дальномера превышает ультразвуковой дальномер. Погрешность измерения совсем незначительная – всего 1–5 мм при прохождении лазерного сигнала через портьеры и ковры. Максимально измеряемое расстояние может составлять до 250 метров, зато яркий солнечный свет или дождливая погода несколько приглушают яркость и четкость лазерного луча. И самое главное - дороговизна лазерных дальномеров по сравнению с ультразвуковыми, склоняет чашу весов при покупке измерительного прибора в пользу второго.

Цены в интернет-магазинах:
viva-telecom.org 20 100 Р
OptTools 14 669,70 Р

Бигам 11 645 Р
viva-telecom.org 11 205 Р

Учитывая небольшую дальность измерения и относительную точность измерения, – ультразвуковые приборы относятся к бытовому классу дальномеров, а к профессиональным дальномерам относятся большинство лазерных моделей.

Помимо прямого измерения расстояния между объектами многие дальномеры обладают рядом полезных и нужных опций, например таких как:

Вычисление площади и объема помещения;

Сложение, вычитание, вычисление площади треугольника, расчет по формуле Пифагора и запоминание результатов;

Подсветка дисплея, звуковой сигнал, автоматическое отключение, маркер точки замера, компас, термометр, таймер, встроенный уровень, уклонометр, магнитное склонение;

Установка прибора на штатив, на откидную скобу, на наручный ремень, поясной чехол;

Возможность предоставления данных на персональный компьютер, Bluetooth поддержка и так далее.

Цены в интернет-магазинах:
viva-telecom.org 12 500 Р

Лазерные дальномеры представлены на рынке уже довольно давно и с каждым годом производители представляют новые модели с новыми функциями. Чтобы помочь вам разобраться в вопросе: «Лазерный дальномер какой лучше?» — мы сделали краткий обзор популярных моделей и расскажем на какие критерии при выборе стоит обратить внимание.

Без чего невозможно даже представить любые строительные или ремонтные работы, независимо от масштабности и уровня сложности – это без проведения измерений и без выполнения разметки. Точность и аккуратность таких операций всегда становятся залогом качества и долговечности получаемого результата. Поэтому измерительный инструмент всегда является безусловной важной составляющей инструментального арсенала любого хозяина дома или квартиры.

Одним из базовых измерений всегда является определение расстояний и линейных размеров объектов. Уже эти величины, в свою очередь, становятся исходными для расчётов, например, площадей и объемов . С давних пор для этих целей, помимо обычных линеек, использовался шнур с нанесенными на него отметками, соответствующий единицам длины. Привычная рулетка - это такой же инструмент, только вместо шнура применена металлическая, матерчатая или пластиковая лента с нанесенной шкалой. Вполне удобно и точно, но если измеряемые расстояния небольшие, или если при выполнении промеров есть помощник. А вот в одиночку, да на значительных длинах – приходится «дробить» измеряемый участок на более мелкие, что, безусловно, сказывается и на времени выполнения работ, и на их точности.

Иное дело, если в распоряжении есть компактный и точный прибор – лазерный дальномер (или, как его еще часто называют – лазерная рулетка). Выполнение измерений занимает считанные секунды, а точность получаемых результатов – выше всяких похвал. Кроме того, современные инструменты такого типа нередко имеют и дополнительную функциональность – позволяют быстро провести необходимые расчёты, так сказать, в «полевых условиях». Разнообразие представленных в продаже моделей – весьма широкое, поэтому перед приобретением будет нелишним получить информацию – лазерный дальномер какой лучше.

На чем основана работа лазерного дальномера

Нет никакого сомнения в том, что все высокотехнологичные разработки в первую очередь проходят «апробацию» в военной сфере. Когда автор этих строк в далеком 1981 году поступил в Одесское высшее артиллерийское училище, первые навыки ведения разведки осваивались еще на стереоскопических дальномерах ДС -1 и ДС-2. Но, кстати, работать на них с достаточной степенью точности могли очень немногие. Поэтому великим «откровением» для нас стало изучение лазерного дальномера ДАК -1, который в те годы считался секретным образцом вооружения.

Нашу радость омрачало лишь то, что доставка дальномера на наблюдательный пункт превращалась в немалое испытание. Комплект представлял собой два тяжеленных металлических ящика и треногу. Поэтому , хорошенько попотев на занятиях, мы строили смелые мечты, что когда-нибудь подобная техника станет намного компактнее, и будет являться чуть ли не предметом индивидуальной экипировки артиллерийского разведчика.

Так оно и получилось, но значительно позднее.

Со временем военные разработки перекочевали и в общедоступную сферу, в частности - в строительство. А развитие технологий привело к тому, что прибор такого принципа действия сейчас можно запросто купить в магазине.

Безусловно, лазерные дальномеры, которые сегодня предлагаются потребителю, по своим возможностям все равно уступают современной военной технике. Но от них и не требуется измерений, исчисляемых многими сотнями метров и километрами. А вот принцип работы и тех и других – очень схожий .

Измерение расстояния основано на способности оптически непрозрачной поверхности отражать направленный на нее световой поток. То есть, если направить на «цель» мощный световой импульс, выработанный встроенным излучателем (лазером), а затем засечь отраженный сигнал , то, зная скорость света, можно определить и расстояние до объекта.

Но на деле измерение производится несколько иначе. Дело в том, что скорость света – огромна, и при небольших измеряемых расстояниях приходится оперировать крайне малыми временными интервалами, измеряемыми наносекундами. Изготовить компактный таймер, который мог бы очень точно производить засечку столь малых интервалов – очень сложная и дорогостоящая задача. Поэтому в строительных дальномерах используется принцип зачески фазового сдвига отраженного светового инфракрасного импульса .

При нажатии кнопки пуска излучатель лазерного дальномера генерирует световой луч строго определенной длины волны и частоты. Направленный на в нужную точку луч отражается от неё , и принимается фотоприемником прибора. Во встроенном микропроцессоре сравниваются фазы луча на выходе из прибора и отраженного . Так как частота и длина волны излучения известны, с высокой точностью можно оценить расстояние, пройденное лучом. Погрешность обычно составляет не более половины длины волны, что дает ошибку в пределах 1÷1,5 мм на метр измеряемого расстояния, что для условий строительства считает отличным показателем.

Существуют и иные типы дальномеров. Так, в мощных приборах, способных точно оценивать дистанции в сотни и более метров, устанавливается мощный импульсный лазер, не дающий рассевания пучка света, и высокоточный таймер, способный с высочайшей точностью замерять временные интервалы. Но стоимость таких приборов – очень велика, и в бытовых условиях применения им не находится.

Применяется для измерения дальности и принцип отражения звуковых волн. Такие ультразвуковые «рулетки» есть в продаже, они рассчитаны на работу на небольших дистанциях. Судя по отзывам, их не особо хвалят опытные строители, хотя, это и некатегоричное суждение.

Но в данной статье в дальнейшем остановимся только на лазерных дальномерах фазового типа.

Устройство компактного лазерного строительного дальномера

По форме большинство современных лазерных строительных дальномеров во многом напоминают мобильные телефоны начала 2000-х годов . То есть они в достаточной степени компактны, легко помещаются в кармане рабочей одежды, ими совсем нетрудно пользоваться в условиях строительства или домашнего ремонта.

Как правило, корпус прибора исполнен из ударопрочного пластика, имеет удобные для удержания в ладонях формы. Так как дальномер рассчитан на работу в условиях строительства или ремонта, то есть при возможном сильном запылении и в любую погоду, предусматривается очень серьезная защита корпуса – обычно не ниже IP-44. Специальные амортизирующие эластичные накладки на корпусе предохраняют прибор от поломок при случайном падении.

Внутри корпуса расположен сам генератор светового импульса (лазер), оптическая схема передачи и приема сигнала, микропроцессорный блок, запрограммированный на измерение расстояний и выполнение ряда других полезных функций.
Мало кому в голову, должно быть, придет идея разбирать этот прибор, так что ограничимся его внешним устройством.

На фронтальном торце прибора всегда видны «окошки» излучателя импульсов и фотоприемника. Там же в некоторых моделях может быть расположена и компактная видеокамера оптического визира.

На лицевой панели дальномера расположен дисплей, на котором высвечиваются текущие установки прибора и результаты проведенных измерений. Обычно применяется монохромная жидкокристаллическая индикация, хотя можно встретить приборы и с цветными дисплеями, хотя это, честно говоря, видится излишеством.

Около дисплея расположены кнопки управления дальномером. Среди них, безусловно, всегда выделяется кнопка пуска, то есть проведения замера. Но большинство современных лазерных рулеток оснащены еще целым рядом интересных полезных функций – доступ к ним или программирование прибора на определенный режим работы также производится с помощью кнопок, а порядок действий подробно излагается в прилагаемой инструкции.

Встречаются приборы и с сенсорными «кнопками», вынесенными на дисплей. Правда, насколько удобно будет с ними работать загрязнёнными руками, что часто случается в процессе ремонта или строительства – не совсем понятно.

Для точной наводки прибора, если измерения проводятся на больших расстояниях, или из-за особенностей освещенности объекта точка лазера может стать незаметной, могут быть предусмотрены дополнительные возможности, позволяющие направить луч точно в цель. Так, некоторые дальномеры имеют оптический визир, подобный тому, что мы привыкли видеть на фотоаппаратах. Визир может быть встроенным или съемным . Также может различаться степень оптического приближения объекта в визире. Если в приборах профессионального класса, рассчитанных на измерения больших расстояний, приближение может доходить до 12 крат, то в более простых моделях визиры попроще, с 6÷8 кратным увеличением.

Еще «круче» исполнены некоторые современные модели. На дисплей таких приборов через встроенную видеокамеру может выводиться изображение объекта, до которого определяется дальность, с прицельным перекрестьем, позволяющим точно выполнить указание нужной точки.

На корпусе многих моделей с тыльной части предусматривается откидной или выдвигающийся упор (скоба или штырь). Это – очень удобна опция, позволяющая проводить измерения длины от труднодоступных точек. Например, можно упереть дальномер в угол между стенами, чтобы промерить диагональ и т.п .

Многие дальномеры оснащаются резьбовой втулкой или другим механизмом, позволяющим фиксировать прибор, например, на штативе, чтобы с большой точность проверять расстояния в разных правлениях из одной точки.

На корпусах приборов часто предусматриваются пузырьковые уровни, позволяющие правильно расположить дальномер по вертикали или горизонтали.

Устройство может быть снабжено портом для кабельного подключения к компьютеру, иметь слот для карты памяти.

В нижней части корпуса обычно располагается батарейный отсек или гнездо разъема для подключения зарядного устройства (если питание осуществляется от встроенных аккумуляторов).

В комплект прибора могут входить чехол и ремни для более безопасного пользования прибором. Хорошим приложением к набору могут быть специальные мишени, позволяющие максимально точно установить точку промера длины, например, если она пока еще не задана каким-либо объектом, способным отразить световой пучок (часто бывает при разбивке на местности).

Критерии оценки лазерного дальномера при выборе

Разнообразие представленных в магазинах лазерных дальномеров – довольно широкое. И чтобы не переплачивать лишнее или не столкнуться с недостаточностью встроенного функционала прибора, необходимо заранее иметь четкое представление об области его применения.

  • Для проведения масштабных строительных работ на участке, связанных с разбивкой и разметкой территории, привязкой объектов и т.п ., по всей видимости, имеет смысл приобретать прибор с упором на максимальную дальность измерений. Так, многие дальномеры профессионального или полупрофессионального класса (разделение – в достаточной степени условное) могут работать на дистанциях свыше 40÷50 метров. Если же потенциальный владелец собирается использовать прибор для проведения внутреннего ремонта, то гнаться за дальностью нет никакого смысла. Достаточно будет показателей и менее 40 м .
  • А вот точность проводимых измерений важна всегда. Особенно, если лазерная рулетка будет применяться, например, для точной подгонки деталей мебели или монтажа сантехнических развязок, где в расчет всегда принимается каждый миллиметр.

Чем меньше погрешность – тем лучше. Высокой точностью обладают приборы, у которых отклонения показателей не превышают 1÷1,5 мм. Большинство наиболее доступных по цене лазерных рулеток дает погрешность до 3 мм. А вот если этот диапазон больше, то прибор особо точным назвать уже нельзя, и следует задуматься, нужны ли вам такие измерения со столь значительными ошибками. .

  • Большинство дальномеров доступного ценового диапазона оснащены лазерами второго класса, с красным свечением. Цвет никоим образом не сказывается на точности измерений, но вот при ярком освещении точка становится малозаметной. Кроме того, прямое попадание в глаз на близком расстоянии таким лучом может привести к ожогу роговицы.

Зеленый луч от лазера первого класса не таит подобной опасности, и более заметен даже при ярком солнце. Правда, дальномеры с таким лазером пока встречаются нечасто, и стоят намного дороже.

  • Обязательно стоит оценить корпус прибора. Уже говорилось, что класс защищённости должен быть не менее IP44 , и чем выше этот показатель, тем лучше. Это позволит работать и в условиях сильной запылённости, и под дождем . Эластичные накладки помогут сберечь дальномер, если вдруг он будет выронен из руки. Приборы в ударостойком корпусе не теряют своей работоспособности при падении на жесткое основание с высоты одного-двух метров.

Но, понятно, лучше не ронять. Для этого многие модели оснащаются специальными ремешками, зажимами для ношения в кармане, поясными чехлами.

Важное качество любого прибора, используемого в строительстве – это диапазон его рабочих температур. То есть он должен одинаково хорошо функционировать и на пике летней жары, и в морозную зимнюю погоду. Этот параметр обязательно указывается в техническом паспорте изделия.

В идеале, дальномером должно быть удобно работать в мороз, не снимая печаток или рукавиц, то есть управляющие кнопки должны быть достаточно крупными . Есть еще один нюанс – резиновые кнопки могут задубеть на морозе и потерять эластичность. Так что разумнее приобретать для таких целей дальномер с силиконовыми кнопками.

При работе в холодное время года «бичом» становится запотевание оптики. Поэтому следует выбирать дальномер, в котором применены линзы, избавленные от этого недостатка.

  • Дальномер должен быть удобен для хозяина. Следует оценить, как он «лежит в руке», насколько удобно будет нажимать кнопку пуска в сложных положениях.

Сложно сказать, является ли достоинством чрезмерная компактность и малый вес прибора. Порой случается так, что слишком миниатюризированный и легкий лазерный дальномер, напротив, усложняет проведение измерений, так как чутко реагирует даже на совсем незначительное подрагивание руки. Безусловно, во всем должна быть разумная мера – слишком крупный и тяжелый прибор тоже будет крайне неудобен.

Если предполагается проведение большого количества измерений из одной «базовой» точки, то следует выбирать прибор, у которого предусмотрена возможность неподвижной установки на поворотный штатив.

  • Нелишним будет сразу уточнить, какие элементы питания и в каком количестве обеспечивают работу прибора. Иногда указывается и продолжительность работы на комплекте батарей. Если лазерный дальномер работает от встроенного аккумулятора, то в комплекте обязательно должен быть соответствующий адаптер для зарядки от сети.

Чтобы максимально долго сохранить потенциал источников питания, многие лазерные дальномеры оснащены функцией автоматического отключения при простое. Например, если измерения не проводились в течение минуты, питание будет отключено. Длительность паузы может быть разная, и нередко ее можно установить самостоятельно в предварительных настройках.

Удобно, если на экране прибора имеется индикатор уровня заряда источника питания.

  • Простейшие дальномеры рассчитаны только на измерения расстояния от одной точки отсчёта, которой в большинстве случаев вступает задняя торцевая сторона корпуса. То есть прибор прикладывается к поверхности, от которой необходимо осуществить промер, а затем нажимается кнопка пуска.

В более совершенных дальномерах предусматривается возможность проведения замеров от нескольких точек отсчета по выбору. Например, четыре точки: от задней или передней торцевых сторон, от точки крепления прибора к штативу, от откинутого или выдвинутого упора. Кстати, в некоторых моделях при открытии этого упора переключение в нужный режим измерения происходит автоматически.

  • Современные лазерные дальномеры представляют собой целый «вычислительный комплекс», позволяющий не просто определять расстояния, но на базе этих значений еще и проводить целый ряд необходимых расчетов :

— Для такого прибора не составит труда быстро и точно выдать значения площади и объема помещения. Причём , площади нередко можно подсчитывать и для фигур, расположенных под уклоном (например, скаты кровли).

— Встроенная функция «Пифагор» дает возможность определения длины стороны треугольника, которую промерить обычным порядком невозможно или крайне затруднительно. Например, можно определить высоту объекта, примерив расстояние до его основания и верхней точки. Или, скажем, вычислить необходимое расстояние до объекта, если прямая видимость до него ограничена какой-либо временной или постоянной помехой.

Встроенный калькулятор с внесенными программами расчета позволяет быстро определить те величины, которые в данный момент промерить невозможно или крайне неудобно. Например, функция «Пифагор» рассчитывает неизвестную сторону треугольника по двум измеренным.

— Удобна функция разделения расстояния на заданное количество отрезков равной или починяющейся какой-то пропорции длины. Например, так будет проще точно расположить столбы забора или фундамента, направляющие обрешетки и т.п .

— Хорошей помощью станет функция дискретного определения дальности (трекинга ). Это означает, что дальномер будет проводить измерения с определенным небольшим интервалом при перемещении направления лазерного луча. Появляется возможность, например, найти дальность до внешнего или внутреннего угла, когда точно «прицелиться» нет возможности или очень сложно.На дисплее по выбору будет показано минимальное или максимальное значение изо всех полученных при таком «прощупывании» объекта.

— Промеренные показания и вычисленные значения могут заноситься в ячейки внутренней памяти дальномера или записываться на SD-карту. Можно приобрести прибор, который будет в автоматическом режиме передавать данные по протоколу Bluetooth на мобильное устройство. Нередко предусматривается и кабельное подключение к компьютерам для обмена полученной информацией.

— Позволяют некоторые приборы проводить и угловые измерения – для этого они оснащены функцией уклономера. То есть после выставления дальномера в штативе и выверки его горизонтальности, можно точно просчитать угловые величины высот расположенных рядом объектов. Это еще больше расширит возможности прибора для «полевых» работ и при разметке под отделку.

  • Следует оценить при выборе информативность дисплея, его понятность для быстрого восприятия. Не поленитесь сразу проверить, насколько ясно написана инструкция по эксплуатации, чтобы затем не пришлось искать ответы в интернете или осваивать работу с прибором «эмпирическим» путем , то есть методом «проб и ошибок».

Недостаток отдельных моделей – показания очень трудно считываются или становятся и вовсе не видны в ясную солнечную погоду или в сумерки. Поэтому предпочтительнее для таких условий работы иметь дальномер с подсветкой экрана.

  • Про комплектность уже упоминалось выше. Но все же нужно добавить еще пару пунктов.

— Точность измерений зачастую зависит и от состояния поверхности объекта, до которого определяется дальность. Так, она может обладать слишком высокой поглощающей или рассеивающей способностью, затрудняющей отражение луча. Или, наоборот , свои «коррективы» может внести зеркально отполированная поверхность. Чтобы не пришлось ничего придумывать по ходу работы, лучше иметь штатную мишень. Она обычно двусторонняя, с продуманной контрастной окраской сторон. При измерении на небольших дистанциях (до 40 метров) чаще применяют светлую мишень, и наоборот.

— А чтобы след лазерного луча был лучше заметен в неблагоприятных условиях, нередко в комплект входят очки со специальным светофильтром. Если в комплекте их нет, то можно приобрести и отдельно – стоят они не так дорого.

  • Наконец, одним из важных критериев выбора всегда является марка изделия. Предпочтение, безусловно, стоит отдавать проверенным брендам, пользующимся непререкаемым авторитетом в этой сфере. К таковым можно отнести приборы компаний «Leica» , «Bosch» , «DeWalt» , «Makita» , «AEG» . Отличные дальномеры по довольно приемлемой цене предлагают фирмы «Condtrol» , «ADA» , «Hammer» , «ADA» , «RGK» , «STABILA» , «Skill» . Интересно, что весьма неплохие результаты в работе показывают и китайские изделия различных компаний. Но у них, как правило – общая беда, заключающаяся в практически полном отсутствии гарантийных обязательств и возможности сервисного обслуживания . То есть, они исправно служат неизвестно сколько (как повезет ), а потом их лучше заменить - благо, цена невысока.

Кстати, если выбирается «брендовое» изделие, то имеет смысл сразу же в магазине уточнить и условия гарантии, и наличие в непосредственной близости фирменных сервисных центров.

А теперь - давайте проведем небольшой «экскурс» по моделям лазерных дальномеров, завоевавшим наибольшую признательность пользователей в 2017 году.

Краткий обзор топ-моделей лазерных дальномеров (2017)

Чтобы не вносить путаницы, разобьём рейтинговые модели на две подкатегории. Первая из них – это дальномеры, в основном предназначенные для работы в помещениях, то есть с относительно небольшими показателями измеряемых расстояний. Во второй – приборы, позволяющие успешно проводить работы на местности.

Лазерные дальномеры для работы в помещениях или на небольших дистанциях

«BOSCH DLE 40»

Один из безусловных лидеров по популярности среди приборов такого класса.

«Bosch DLE 40» — модель пользуется чрезвычайно высокой востребованностью у широкого круга потребителей

Основные характеристики прибора:

Класс лазера - 2;

— Длина волны - 635 нм;

40 м .

— Количество точек отсчета - две.

от — 10 до +50 градусов .

.

Время измерения - 0,5 с.

.

Элементы питания - 4 батарейки типа ААА .

— Габариты - 100×58×32 мм.

— Масса - 180 г .

объема , расчетов треугольников .

Примерная стоимость - 6200 руб.

— Высочайшая надежность в любых условиях работы.

— Экономное расходование питания.

— Удобный корпус с эластичными накладками, не выскальзывающий даже из мокрых рук.

Недостатки:

— При ярком солнечном свете не особо хорошо видны показания дисплея. Не помешала бы дополнительная подсветка.

— Именно на этой модели – нет пузырькового уровня.

«Makita LD030 P»

Компактный лазерный дальномер с ограниченным количеством функций и невысокой стоимостью

Характеристики прибора:

Класс лазера - 2;

— Длина волны - 635 нм;

— Максимальная дальность измерений - до 30 м .

— Точность измерений - ± 1,5 мм.

— Количество точек отсчета - две.

— Температурный диапазон эксплуатации - от — 25 до +50 градусов .

— Резьбового гнезда под штатив нет.

— Элементы питания - 2 батарейки типа ААА, которых должно хватить на 5000 измерений.

— Габариты - 115×53×25 мм.

— Масса - 90 г.

— Набор функций: единичные измерения дальности, вычисления площади, трекинг (дискретные измерения)

— В комплекте – удобный поясной чехол.

— Примерная стоимость - 4100 руб.

Отмеченные достоинства:

— Удобная для работы компоновка.

— Отсутствие «перегруженности» кнопками управления, простой алгоритм работы.

— Крупные символы на дисплее и хорошая подсветка – показания легко снимаются, в том числе в солнечную погоду или в условиях недостаточно видимости, и людьми с пониженным зрением

— Доступная цена.

Высказанные замечания:

К сожалению, при столь «громком» бренде – весьма высокий процент рекламаций, видимо, по причине лицензионной сборки. Гарантийные обязательства соблюдаются неукоснительно, но тем не менее…

Цены на лазерный дальномер Makita

лазерный дальномер Makita

«Condtrol X2 Plus»

Многофункциональный лазерный дальномер среднего ценового диапазона

Основные характеристики модели:

Класс лазера - 2;

— Длина волны - 650 нм;

— Максимальная дальность измерений - до 60 м .

— Количество точек отсчета - три, с учётом откидывающейся скобы для измерения из углов.

— Системы измерения - метрическая и дюймовая .

— Габариты - 110×43×26 мм.

— Масса - 70 г.

— Набор функций для вычисления площади, объема , расчетов треугольников , разбивки на отрезки, трекинг.

— В комплекте – чехол.

— Примерная стоимость - 4400 руб.

Указанные достоинства:

— Хороший функционал ;

— Вполне доступная цена.

— Оригинальный внешний вид и удобный для восприятия дисплей.

Высказанные претензии:

— Прибор слишком «теплолюбивый» - даже при небольшом морозе начинаются сбои в работе.

— Скошенный книзу корпус затрудняет стабильное вертикальное положение дальномера при промере расстояния верх.

Кнопки расположены слишком близко, и при работе в рукавицах это создает немалые трудности.

— Скорость измерений оставляет желать лучшего – получения результата приходится дожидаться больше секунды.

«ADA Cosmo MINI А00410»

Надежный и точный на небольших дистанциях лазерный дальномер.

Характеристики лазерного дальномера:

— Класс лазера - 2;

— Длина волны - 650 нм;

— Максимальная дальность измерений - до 30 м .

— Точность измерений - ± 3 мм.

— Количество точек отсчета - две;

— Температурный диапазон эксплуатации - от 0 до +40 градусов .

Элементы питания - 2 батарейки типа ААА.

— Габариты - 107×428×24 мм.

— Масса - 110 г.

— Набор функций для вычисления площади, объема , расчетов треугольников , трекинг .

Преимущества модели:

— Хороший, но не избыточный набор функций.

— Компактные размеры, ударопрочный корпус с классом защиты IP54 .

— Очень простой и удобный алгоритм работы. Всего три кнопки.

— Легко считываемые показания дисплея.

— Хорошо заметный луч лазера.

Супер привлекательная цена за подобную функциональность

Недостатки:

— Не самые выдающие показатели точности – погрешности 3 мм иногда становится многовато.

— Не рассчитан на отрицательные температуры.

— Нет чехла в комплекте.

— Есть претензии ко внятности прилагаемой к дальномеру инструкции по эксплуатации.

«RGK D30»

Несложная в обращении лазерная рулетка с минимальным набором необходимых функций и высоким пользовательским рейтингом.

Характеристики модели:

Класс лазера - 2;

— Длина волны - 6390 нм;

— Максимальная дальность измерений - до 30 м .

— Точность измерений - ± 2 мм.

— Количество точек отсчета - одна.

Температурный диапазон эксплуатации - от 0 до +40 градусов.

— Системы измерения - метрическая и дюймовая .

— Время измерения - от 0,5 до 4 с.

Элементы питания - 2 батарейки типа ААА.

— Габариты - 110×43×24 мм.

— Масса - 69 г.

— Набор функций для вычисления площади, объема , расчетов треугольников , трекинг

— В комплекте – чехол и кистевой ремень.

— Примерная стоимость - 2500 руб.

Упомянутые пользователями достоинства:

— Отличная защищенность корпуса – IP54 .

— Мягкие силиконовые кнопки.

— 10 ячеек памяти для хранения результатов измерений и расчетов .

— Функция автоматического отключения при простое.

— Дисплей с подсветкой, хорошо читаемый в любых условиях.

Недостатки:

— Пузырьковый уровень на корпусе – больше декоративный элемент, так как точностью не отличается.

— Погрешность при измерении в одну и ту же точку при неподвижном приборе хоть и ненамного, но все же выходила за рамки заявленных ± 2 мм

— Не особо хорошее быстродействие.

— Нельзя работать при отрицательных температурах.

Указанные недостатки в значительной степени компенсируются простотой прибора и очень даже доступной ценой.

Лазерные дальномеры для работы на местности

Такие приборы обладают довольно высокими показателями измеряемой дальности, часто снабжаются оптическими визирами или видеокамерами. Позволяют проводить разнообразные операции по разметке участка, привязке объектов, выполнению строительных работ.

«BOSCH GLM 250VF »

Качественная «всепогодная» модель с широким набором функций

Модель – далеко не новая, но устойчиво ежегодно входит в рейтинги наиболее популярных и надежных .

Основные характеристики прибора:

Класс лазера - 2;

— Длина волны - 635 нм;

— Максимальная дальность измерений - до 250 м .

— Количество точек отсчета - четыре , в том числе – откидывающийся штырь для измерения из труднодоступных мест.

Температурный диапазон эксплуатации - от — 10 до +50 градусов.

— Системы измерения - метрическая и дюймовая .

— Время измерения - 0,5 с.

— Резьбовое гнездо под штатив ¼ дюйма .

— Встроенный оптический визир

— Габариты - 120×66×37 мм.

— Масса - 240 г.

— Полный набор функций для вспомогательных вычислений.

— В комплекте – ремень для переноски.

— Примерная стоимость - 22000 руб.

Упомянутые пользователями достоинства:

— Отличные показатели в любых условиях проведения измерений.

— 20 ячеек памяти для хранения результатов измерений и расчетов .

Автоматическое отключение при простое.

— Наличие удобного оптического «прицела» для измерения расстояний до далеко расположенных объектов.

Высочайшее качество сборки.

Недостатки:

— Нет индикатора заряда батарей.

— В условиях запыленности и в яркий солнечный день дальность измерений падает до примерно 100 метров.

— Несмотря на появление новых моделей, видимо, из-за остающегося высоким спроса – цена довольно высока и пока не имеет тенденции к снижению.

Цены на лазерный дальномер BOSCH

лазерный дальномер BOSCH

«LEICA DISTO D510»

Профессиональная модель с высокими показателями точности измерений.

Основные характеристики прибора:

Класс лазера - 2;

— Длина волны - 635 нм;

— Максимальная дальность измерений - до 200 м .

— Точность измерений - ± 1,0 мм.

— Количество точек отсчета - пять.

— Встроенный видеовизир с 4-х кратным зумом ;

— Датчик наклона с диапазоном 360 градусов позволяет проводить угловые измерения. Единицы измерения – градусы, проценты, мм/м , д ю ймы на футы.

Температурный диапазон эксплуатации - от — 10 до +50 градусов.

Время измерения - 0,5 с.

— Резьбовое гнездо под штатив ¼ дюйма .

Элементы питания - 2 батарейки типа ААА.

— Габариты - 143×58×29 мм.

— Масса - 198 г .

— Полный набор .

— Система связи с мобильными устройствами по протоколу Bluetooth.

— Встроенная память на 30 ячеек. Возможность установки дополнительно карты памяти.

— В комплекте – удобный поясной чехол-кобура, кистевой ремень.

— Примерная стоимость - 38500 руб.

Упомянутые пользователями достоинства:

— Высочайшая надежность и точность в любых условиях работы.

— Очень широкий набор функций, вполне удобный интерфейс для работы с ними.

— Безукоризненное качество производства.

— Прибор включен в Госреестр Систем Измерения.

Недостатки:

— Высокая цена, делающая прибор малодоступным.

— Быстро садятся элементы питания, причем – даже при выключенном приборе. При длительном просторе батарейки лучше изымать из отсека.

«CST/Berger RF25 »

Лазерный дальномер профессионального класса. Натуральная стеклянная просветленная оптика и оригинальная керамическая система фиксации линз предопределяет высочайшие показатели точности измерений.

Характеристики прибора:

Класс лазера - 2;

— Длина волны - 635 нм;

— Максимальная дальность измерений - до 250 м .

— Точность измерений - ± 1,0 мм.

— Количество точек отсчета - четыре .

— Трёхпозиционный упорный штифт с задней части корпуса.

— Встроенный визир и дополнительное подсоединение полноценного оптического «прицела» для работы на предельных дистанциях.

— Системы измерения длины - метрическая и дюймовая.

Температурный диапазон эксплуатации - от — 10 до +50 градусов.

— Время измерения - 0,5 с.

— Резьбовое гнездо под штатив ¼ дюйма .

— Точный пузырьковый уровень на корпусе.

Элементы питания - 4 батарейки типа ААА.

— Габариты - 120×66×37 мм.

— Масса - 240 г.

— Полный набор необходимых функций для «полевых» вычислений .

— Встроенная память на 30 ячеек.

— В комплекте – удобный защитный чехол, кистевой ремень.

— Примерная стоимость - в зависимости от комплектации и от региона продаж – от 19 до 25 тыс. рублей.

Достоинства модели:

— непререкаемая точность измерений на любых дистанциях благодаря высококачественной оптике.

— Широкий набор функций.

— Многострочный информативный дисплей с легко считываемыми показаниями.

— Отменное качество сборки.

— Ударопрочный корпус со степенью защищенности IP54 . Прибор спокойно выдерживает падения на бетонный пол с высоты 1 метра.

— Данных о возвратах модели из-за недостаточности качества – не зарегистрировано.

Недостатки:

Сколь-нибудь значимых недостатков, за исключением завышенной цены (с учетом отсутствия датчика уклона) пользователями не высказано.

Итак, были рассмотрены критерии выбора лазерного дальномера, дан обзор популярных моделей. В заключение стоит сказать, возможно, банальность, но она все же необходима.

Инструменты такого класса стоит покупать исключительно в надежных специализированных магазинах, где можно получить грамотную консультацию, изучить условия предоставления гарантии и обязательно сделать отметку в паспорте о месте и дате покупки. Доверять сомнительным и торговым точкам или же отдавать немалые деньги за «кота в мешке» при покупке через интернет у случайных продавцов – вряд ли разумно.

Цены на популярные лазерные дальномеры

В завершение – интересный видеосюжет, показывающий возможности лазерного дальномера «Bosch GLM 50 C»

Видео: Демонстрация функциональных возможностей лазерного дальномера «Bosch GLM 50 C»

Бесконтактные способы измерения расстояний, используя волны в ультразвуковом диапазоне широко применяются в нашей повседневной жизни. Мы сталкиваемся с ними, делая УЗИ в поликлинике, используя эхолот на рыбалке. Парктроник в автомобиле помогает нам избежать столкновения, сдавая задним ходом. И конечно же ультразвуковые датчики широко применяются в робототехнике, помогая нашему роботу лучше «осязать» мир. В живой природе принцип ультразвуковой локации используется, например, летучими мышами и дельфинами. Сегодня я расскажу как же все это работает.

Что такое ультразвук

Человек способен воспринимать звуковые волны, совершающие колебания в диапазоне от 20 до 20000 Гц (напомню, 1 Герц — это число колебаний в секунду). С возрастом диапазон воспринимаемых нами частот снижается, но в среднем, ребенок способен воспринимать звук именно в этом диапазоне. Если же колебания звуковых волн превысят этот диапазон, то человек перестает воспринимать их, но летучие мыши, собаки, дельфины, и мотыльки вполне могут их услышать. Такие колебания являются примерами ультразвука. Ультразвук — это упругие колебания и волны в диапазоне от 20 кГц до 1 ГГц. Термин упругие подчеркивает неэлектромагнитную природу этих колебаний и волн.

Длина волны находится в обратной зависимости от ее частоты, следовательно ультразвуковые волны, по сравнению с обычным звуком имеют меньшую длину волны. Вследствие этого, ультразвуковые волны отражаются от различных препятствий гораздо лучше, чем обычные звуковые волны, что делает их весьма полезными на практике.

Пьезоэффект и магнитострикция

Как же получить колебания в ультразвуковом диапазоне?

Кристаллы некоторых материалов (таких как кварц) способны совершать очень быстрые колебания, при прохождении через них электричества. Это, так называемый, обратный пьезоэффект . Во время вибрации, они толкают и тянут воздух вокруг себя, производя, тем самым, ультразвуковые волны. Устройства, которые производят ультразвуковые волны с помощью пьезоэлектричества известны как пьезоэлектрические преобразователи. Пьезоэлектрические кристаллы также работать в обратном порядке: если ультразвуковые волны, распространяясь по воздуху, сталкиваются с пьезоэлектрическим кристаллом, слегка деформируют его поверхность, в результате чего в кристалле возникает электрическое поле. Итак, если подключить пьезоэлектрический кристалл к измерителю электрического напряжения, мы получим детектор ультразвука.

Ультразвуковые волны могут быть получены с использованием магнетизма вместо электричества. Так же, как пьезоэлектрические кристаллы производят ультразвуковые волны в ответ на электричество, существуют и другие кристаллы, которые излучают ультразвук в ответ на магнетизм. Это эффект магнистрикции . Такие кристаллы называются магнитострикционными кристаллами. Датчики, использующие их, называются магнитострикционными преобразователями.

В англоязычной литературе ультразвуковые датчики называются ultrasound sensor .

Ультразвуковой дальномер

Используя пьезоэлектрические или магнитострикционные преобразователи мы можем создать устройство, измеряющее расстояние до объектов — ультразвуковой дальномер, который работает следующим образом.

В момент измерения мы создаем электрическое колебание при помощи генератора, которое преобразуясь (например, при помощи пьезокристалла) в ультразвуковую волну, излучается в окружающее пространcтво. Эта волна отражается от препятствия и возвращается как эхо в приемник (также можно использовать пьезокристалл). Измеряя время между посылкой и приемом нашего отраженного сигнала и, зная скорость звуковой волны , распространяемой в данной среде (для воздуха это величина около 340 м/с), мы можем вычислить расстояние до препятствия.

  • Измерения объектов из звукопоглощающих, изоляционных материалов или имеющих тканевую (шерстяную) поверхность могут привести к неправильным измерениям вследствии поглощения (ослабления) сигнала. Домашний кошара может стать этаким «стелсом» для ультразвукового дальномера.
  • Чем меньше объект, тем меньшую отражающую поверхность он имеет. Это приводит к более слабому отраженному сигналу.

Зная ограничения, связанные с физической природой ультразвука можно решить подходит этот тип дальномера для вашей задачи или же нет.

Введение 3

Теоретическая часть 4

Описание схемы 6

Описание программы 13

Заключение 34

Библиографический список 35

Приложения 36

Введение

Курсовой проект предназначен для приобретения практических навыков проектирования несложных микропроцессорных систем различного назначения. Проект базируется на теоретической части дисциплины «Организация ЭВМ и систем». Задание на курсовой проект выдается руководителем проекта.

Курсовой проект выполняется с целью закрепления знаний по курсу «Организация ЭВМ и систем» и развития навыков самостоятельного проектирования микропроцессорных систем различного назначения.

Задачами курсового проекта являются:

    практическое овладение методикой проектирования устройств;

    синтез функциональной схемы микропроцессорной системы на основе анализа исходных данных;

    получение навыков разработки аппаратного и программного обеспечения микропроцессорной системы;

    дальнейшее развитие навыков функционально-логического, схемотехнического и конструкторского проектирования, оформления и выпуска конструкторской документации в соответствии с ГОСТ.

Для решения перечисленных задач необходимы знания не только курса «Организация ЭВМ и систем», но и ряда смежных дисциплин, а также умение пользоваться нормативно-справочной информацией.

Одним из основных направлений научно-технического прогресса в настоящее время является развитие и широкое применение изделий микроэлектроники в промышленном производстве, в устройствах и системах управления самыми разнообразными объектами и процессами.

Одним из примеров являются микроконтроллеры, производимые фирмой Microchip Technology. Это семейство 8-разрядных микроконтроллеров отличается низкой ценой, низким энеpгопотpеблением и высокой скоpостью. Микроконтроллеры имеют встpоенное ЭППЗУ пpогpаммы, ОЗУ данных и выпускаются в 18 и 28 выводных коpпусах. Для изделий, пpогpамма котоpых может меняться, либо содеpжит какие-либо пеpеменные части, таблицы, паpаметpы калибpовки, ключи и т.д., выпускается электрически стираемый и пеpепpогpаммиpуемый микроконтpоллеp PIC16F84. Он также содержит электрически пеpепpогpаммиpуемое ПЗУ данных. Именно такой контpоллеp и будем использовать для разработки устройства ультразвукового измерения дальности.

Теоретическая часть

Работа устройства ультразвукового измерения дальности основывается на явлении распространения звуковых волн в воздушной среде и отражения их в процессе распространения от других сред (контролируемых тел).

Информация о расстоянии до контролируемого тела, точнее некоторой отражающей зоны, принадлежащей поверхности контролируемого тела, определяется временным запаздыванием принимаемого сигнала относительно излучаемого. Примерно таким же образом летучие мыши ориентируются в пространстве: они излучают вперед направленный пучок ультразвуковых колебаний и ловят отраженный сигнал. Звуковые волны распространяются в воздушной среде с определенной скоростью, поэтому по задержке прихода отраженного сигнала можно с достаточной степенью точности судить, на каком расстоянии находится тот предмет, который отразил звук.

Ультразвуковой дальномер производит измерение расстояния до контролируемого тела по схеме эхо-локации (см. рис 1).

Рис. 1. Схема эхо-локации.

Для измерения расстояний в воздушной среде используются пьезокерамические преобразователи (типа МУП-3 и МУП-4, произведенные “ЭЛПА” г. Зеленоград), работающие на 40 кГц частоте. Два пьезокерамических преобразователя (излучающий и приемный), подобранные так, чтобы резонансная частота излучения излучающего, совпадала с резонансной частотой приема приемного, образуют акустический блок.

Преимуществами использования таких преобразователей в воздушной среде являются: сравнительная простота излучения и приема колебаний, компактность приемоизлучающих элементов аппаратуры, высокая устойчивость к шумовому, химическому и оптическому загрязнению окружающей среды, возможность работы в агрессивных средах при высоких давлениях, возможность значительного удаления вторичной аппаратуры от места измерений, длительный срок службы, простота в использовании, сравнительно малая стоимость, практически мгновенная готовность к работе после включения, нечувствительность к электромагнитным помехам, высокая надежность, невосприимчивость органов слуха человека к ультразвуку используемой частоты (40КГц) и ряд других.

Примерами применения разрабатываемого ультразвукового дальномера могут служить: контроль дистанции между автотранспортом при его движении в условиях недостаточной видимости на небольших скоростях, измерение уровня заполнения резервуаров жидким веществом, уровня загрузки бункеров или кузовов автомобилей сыпучим или дробленым материалом, контроль размеров продукции, измерение дистанции от борта судна до причальной стенки и др.

Описание принципиальной схемы

Принципиальная электрическая схема проектируемого устройства представлена в приложении. Представленную схему можно разбить на 5 функциональных блоков:

1) блок питания;

2) блок передатчика;

3) блок приемника;

4) блок индикации;

5) блок цифрового управления.

Рассмотрим порядок работы каждого из них.



Рис. 2. Блок питания.

Блок питания представлен на рис. 2. При включении сетевого выключателя S1 на первичную обмотку трансформатора TV1 поступает переменное напряжение величиной в 220В. Со вторичной обмотки трансформатора снимается пониженное до 7,5В переменное напряжение. После прохождения через диодный мост V1-V4 мы получаем выпрямленное, несглаженное напряжение величиной около 7В, т.к. существует некоторое небольшое падение напряжения на диодах. Пульсации полученного выпрямленного напряжения сглаживает электролитический конденсатор С2, а керамический конденсатор С1 предназначен для фильтрации высокочастотных сетевых помех. Затем напряжение стабилизируется при помощи интегрального стабилизатора напряжения DA1 и фильтруются высоко и низкочастотные помехи с помощью конденсаторов С3 и С4 соответственно. Диодный мост V1-V4 собран на кремниевых низкочастотных диодах допускающих напряжение до 100В при токе не более 10А. Интегральный стабилизатор напряжения DA1 (КР142ЕН5В) имеет следующие характеристики: Uвых=5В – выходное напряжение;

Iмакс=1,5А – максимальный ток нагрузки;

Pмакс=10Вт – максимальная мощность;

включение – плюсовое – тип подключения.

Данная схема блока питания является типовой.

Рис. 3. Блок передатчика.

Таблица 1. Характеристики ПКУП МУП-3

Значение


Ширина полосы излучения по уровню 0,5, кГц

Ширина полосы приема по уровню 0,5, кГц

По уровню 0,7 макс.

По уровню 0,5 макс.

Емкость на частоте 1 кГц, пФ

Входной импеданс на частоте максимального излучения, кОм

Предельное допустимое значение напряжения сигнала на входе, В

Биполярные транзисторы типа n-p-n КТ972 используемые в схеме имеют следующие параметры:

Uкбои=60В - максимально допустимое импульсное напряжение коллектор-база;

Uкэои=60В - максимально допустимое импульсное напряжение коллектор-эмиттер;

Iкmaxи=4000мА - максимально допустимый импульсный ток коллектора;

Pкmaxт=8Вт - максимально допустимая постоянная рассеиваемая мощность коллектора с теплоотводом;

H31э≥750 - статический коэффициент передачи тока биполярного транзистора в схеме с общим эмиттером;

Iкбо≤1000мкА - обратный ток коллектора;

Fгр≥200МГц - граничная частота коэффициента передачи тока в схеме с общим эмиттером;

Рис. 4. Блок приемника.

Блок приемника изображен на рис. 4. Блок приемника выполнен по схеме усилителя с общим эмиттером. Максимальный коэффициент усиления для усилителя выполненного по схеме с общим эмиттером рассчитывается из соотношения резисторов R19 и R22. Т.е. 10000/10=1000. Резисторы R16 и R18 служат для стабилизации рабочей точки транзистора. Соотношение их номиналов определяет положение рабочей точки транзистора Т6. Резистор R13 подтягивает выход приемника к земле, когда нет сигнала с усилителя. Резистор R17 служит для установки режима чувствительности ультразвукового датчика Qz3. Конденсаторы С7 и С8 фильтруют постоянную составляющую. В качестве излучателя Qz3 использован пьезокерамический ультразвуковой преобразователь МУП-4, (т.к. он обладают достаточно высокой чувствительностью, по заверениям производителя) основные характеристики которого представлены в таблице 2.

Таблица 2. Характеристики ПКУП МУП-4

Наименование параметра, единица измерения

Значение

Частота максимальной передачи, кГц

Звуковое давление на расстоянии 0,3 м при
Uвх=5В на частоте максимального излучения, дБ

Чувствительность на частоте максимального приема, мВ/Па

Ширина полосы излучения по уровню 0,5, кГц

Ширина полосы приема по уровню 0,5, кГц

Диаграмма направленности, Град

По уровню 0,7 макс.измерение устройство предупреждения аварийных ситуаций при движении по трассеКурсовая работа >> Коммуникации и связь

... ультразвуковых приборов не возможно из-за небольшой дальность действия... крупногабаритным автотранспортом. Регулировка дальности измерений Имеется три уровня чувствительности... аналоговых и цифровых функциональных устройств . Использование технологии BCDIII ...

  • Повышение эффективности защиты от боеприпасов с радиовзрывателями на основе реализации методов

    Реферат >> Коммуникации и связь

    На обнаружение сигнала, – время измерения основных параметров сигнала; – время... -1 основу узла памяти составляют 3 ультразвуковые линии задержки и коммутирующие их электронные... разработку эффективных мер и устройств повышения радиуса дальности работы СП РВ. ...