Сенсорный выключатель маломощный своими руками. Принципиальная схема сенсорного выключателя. Доработка типовых устройств


Простейшее сенсорное устройство можно собрать на нескольких доступных деталях. Всего три транзистора, три резистора и один светодиод, вот и всё. Собирать схему можно даже навесным монтажом, всё работать будет.


Транзисторы любые NPN структуры: КТ315, КТ3102 или BC547 или любой другой. Резисторы 0,125-0,25 Ватт. Светодиод любого цвета, но лучше красный, так как падение напряжение падение у него минимальное. Питание 5 вольт, больше меньше можно и меньше тоже.

Все компоненты были компактно соединены между собой на миниатюрной печатной плате, которую можно сделать просто вырезав лишнюю медь резаком оставив таким способом остроугольные многоугольники. Детали, использованные для поверхностного монтажа, транзисторы в sot-26 npn, резисторы 0805, перемычки – кусочки провода, вместо них, если есть берите крупный 2512 резисторы с нулевым (условно) сопротивлением. Сенсорное устройство работает сразу, без настройки.

Объяснение работы схемы

Дотрагиваясь до базы транзистора Q3 вы наводками открываете его, вследствие чего через его КЭ и резистор 1 Мом течет ток, который открывает следующий полупроводник Q2, тот открываясь открывает Q3, который уже управляет светодиодом, открываясь через его КЭ течет ток, от минуса идет к катоду светодиода, а к аноду он уже подключен. Резистор 220 Ом здесь “токоограничительный”, на нём падает лишнее напряжение, что защищает диод от деградирования кристалла и полного выхода из строя LED1

Применение

Ну вот горит светодиод по касанию пальца – и что? А вот то, что вместо этого светодиода ставим реле и теперь мы можем управлять почти любой нагрузкой, в зависимости от характеристик применяемого реле. Ставим мощную лампу накаливания, подключенную к сети, а в разрыв этой цепи контакты реле. Теперь при нажатии, а точнее касании сенсора лампа светит.

Также организовать включение/отключение нагрузки можно с помощью оптопары, если отсутствует реле, тогда также будет гальваническая развязка. Эта прекрасная вещь состоит из светодиода и фототранзистора, когда первый светит, то это открывает транзистор и через его КЭ может течь ток. Включаем нужные выводы оптрона в схему сенсора вместо светодиода LED1, а остальные два в разрыв источника питания и любой нагрузки. Эту деталь можно изъять из зарядок от телефона. Возьмите, к примеру, PC-17L1.

Чуть ниже вы видите дополнение к основной схеме, где показано как нужно подключать оптопару к схеме сенсора, также добавлен один транзистор, это нужно для того чтобы вы могли подключать весомую нагрузку, а не просто светодиоды на 20 mA.

Еще вместо реле и оптопары возможно применение двух npn транзисторов. Я так и сделал, схему вы видите. Работает это так: Q5 всегда должен быть открыт, через резистор 10 кОм, но через КЭ открытого Q4 на базу Q5 поступает “минус” и из-за этого он закрыт. Когда же вы касаетесь сенсора – то минус поступает через открытый Q1 на базу Q4 и закрывает его, теперь уж ничто не мешает Q5 оставаться открытым – нагрузка работает, а в моем случае мощный 1 Ватт светодиод ярко светит.

Так это выглядит в собранном состоянии.

Сенсор не имеет фиксации, дотронулись – светит, отпустили – не светит. Коль желаете сделать фиксацию – просто добавьте в схему триггер, например, на микросхеме КМ555ТМ2 или любой другой (можно даже на таймере 555 реализовать это). С добавление триггерной системы при касании к сенсору нагрузка будет включена до тех пор, пока не произойдет следующее касание или исчезнет питание схемы.

На практике это можно применить для быстрого включения и отключения освещения в комнате. Очень удобно, коснулся небольшого чувствительного участка, и комната освещена, второе касание отключит свет. Небольшое количество энергии будет теряться, но этим можно пренебречь.


Коментарии

Схема работает, но из-за своей простоты далеко не идеально. Если сенсор большой, то схема может срабатывать даже тогда, когда вы еще не дотронулись до него, также если вы рукой расчешете волосы возле датчика светодиод также может загореться. Выход из этой ситуации простой – миниатюрный сенсорный датчик.

Как уже говорилось – открытие Q3 происходит за счет наводок, видеть это можно на видео, светодиод светит не постоянно, а подмигивает с большой частотой, но это хорошо заметно при съёмки.

Яркость работающего диода не велика, если вы дотрагиваетесь только до базы третьего транзистора, но стоит вам коснуться еще и плюса питания, то ваше тело выступит в роле резистора и транзистор Q3 перейдет в насыщение. Но при таком раскладе для некоторых потеряется смысл сенсора.

Эта схема очень проста и предназначена лишь для понимания принципа работы

Электронные технологии охватывают обширный спектр бытовой сферы. Ограничений нет практически никаких. Даже простейшие функции выключателя ламп бытового светильника теперь все чаще выполняют сенсорные приборы, а не технологически устаревшие - ручные.

Электронные устройства, как правило, входят в разряд сложных конструкций. Между тем соорудить сенсорный выключатель своими руками, как показывает практика, совсем несложно. Минимального опыта конструирования электронных приборов для этого вполне достаточно.

Предлагаем разобраться в устройстве, функциональных возможностях и правилах подключениях такого коммутатора. Для любителей самоделок мы подготовили три рабочие схемы сборки интеллектуального прибора, которые можно реализовать в домашних условиях.

Термин «сенсорный» несет в себе довольно широкое определение. По сути, под ним следует рассматривать целую группу датчиков, способных реагировать на самые разные сигналы.

Однако применительно к выключателям – приборам, наделенным функционалом коммутаторов, сенсорный эффект чаще всего рассматривают как эффект, получаемый от энергетики электростатического поля.

Такой, примерно, нужно рассматривать конструкцию выключателя света, созданную на основе механизма сенсора. Лёгкое прикосновение подушечкой пальца к поверхности фронтальной панели включает освещение в доме

Обычному пользователю достаточно прикоснуться пальцами руки к такому контактному полю и в ответ будет получен тот же самый результат коммутации, какой дает стандартный привычный клавишный прибор.

Между тем внутреннее устройство сенсорного оборудования существенно отличается от простого ручного выключателя.

Обычно такая конструкция выстраивается на основе четырех рабочих узлов:

  • панель защитная;
  • контактный датчик-сенсор;
  • электронная плата;
  • корпус устройства.

Разновидность приборов на базе сенсоров обширна. Выпускаются модели с функциями обычных выключателей. И есть более совершенные разработки – с регуляторами яркости, отслеживающие температуру окружения, поднимающие жалюзи на окнах и прочие.

Здесь присутствуют традиционные характеристики, такие как:

  • бесшумность действия;
  • интересный дизайн;
  • безопасное использование.

Помимо всего этого, добавляется еще одна полезная функция – встроенный таймер. С его помощью пользователь получает возможность управлять коммутатором программно. К примеру, задавать время включения и отключения в определённом временном диапазоне.

Правила подключения прибора

Технология монтажа подобных устройств, несмотря на совершенство конструкций, осталась традиционной, как это предусмотрено для стандартных выключателей света.

Обычно на задней части корпуса изделия присутствуют два терминальных контакта – входной и под нагрузку. Обозначаются на устройствах иностранного производства маркерами «L-in» и «L-load».

Выводы и полезное видео по теме

Этот обзор позволяет ближе познакомиться с коммутаторами света, быстро набирающими популярность в обществе.

Сенсорные выключатели, отмеченные продуктовой маркой Livolo, - что это за конструкции и насколько привлекательны они для конечного пользователя. Видео гид по коммутаторам нового типа поможет получить ответы на вопросы:

Завершая тему сенсорных коммутаторов, стоит отметить активное развитие в области разработки и производства выключателей для бытового и промышленного использования.

Выключатели света, казалось бы, простейшие конструкции, совершенны уже настолько, что теперь управлять светом можно голосовой кодовой фразой и при этом получать полную информацию о состоянии атмосферы внутри помещения.

Есть, что дополнить, или возникли вопросы по сборке сенсорного выключателя? Можете оставлять комментарии к публикации, участвовать в обсуждениях и делиться собственным опытом использования таких приборов. Форма для связи находится в нижнем блоке.

Предлагаю собрать интересную радиолюбительскую конструкцию которую легко повторить даже начинающему своими руками. Это сенсорный выключатель схема которого приводится ниже можно использовать в различных ситуациях. В сенсорные устройствах, хоть и отсутствует гальваническая развязка с электросетью, но они совершенно безопасны и не нанесут вред здоровью человека

Принцип работы схемы состоит в том, что как только биологический объект попадает в зону действия сенсора, включается свет. Если же он покидает зону контроля ИК датчика, то через заданный временной интервал устройство отключит освещение.

В момент включения напряжения питания схемы счетчик CD4040 находится в состоянии сброса и на его выходе логический ноль, а на выходе инверторного элемента ИЛИ-НЕ DD1.6 единица, при этом транзистор открыт, и реле нормально замкнутыми контактами шунтирует кнопку выключателя.

Для работы инфракрасного сенсора используется на элементах ИЛИ-НЕ DD1.1 и DD1.2. Частота следования импульсов 36кГц подобрана для примененного фотоприемника. Если же использовать другой, то для него нужно будет осуществить подстройку генератора на ту частоту, на которую рассчитан фотоприемник.

Для увеличения импульсного тока, поступающего с генератора на инфракрасный светодиод HL2, используется усилитель на элементах DD1.3 и DD1.4. Особенность фотодатчика заключается в том, что при попадании на него модулированного ИК излучения, на его выходе установится сигнал логического нуля.

Пройдя через инвертирующий элемент DD1.5, на одиннадцатом выводе счетчика появится логическая единица, которая запретит ему работать. Если отраженный луч не попадет на фотоприемник, то на этом же входе будет логический ноль, и счетчик начнет считать импульсы, поступающие на десятый вход от мигающего светодиода HL1.

Элементы схемы подобраны так, что через двадцать минут работы, если в зоне доступа сенсора биологического объекта не наблюдается, на выходе счетчика установится логическая единица, а на выходе элемента DD1.6 ноль. При этом транзистор отключит реле К1 и освещение.

При включение схема переключает триггер в одно из устойчивых состояний и включает свет при первом касании к сенсорному датчику, при повторном наоборот переключает триггер в противоположное состояние и тем самым выключая освещение.

Продолжительность нахождения триггера в любом состоянии ничем не задается, до тех пор, пока на схему подано напряжение.

Триггера подключен по типовой схеме для микросхемы К561ТМ2. С первого выхода микросхемы управляющий сигнал поступает на усилитель тока выполненный на биполярном транзисторе. Управляющий вывод тиристора подключен к эммитеру этого транзистора и при достижении на нем уровня напряжения 3В тиристор откроется, и включит свет.

Т.к полевой транзистор обладает большим сопротивлением перехода сток-исток-затвор, плюс в цепи сенсора имеются мегаомные резисторы, то это не позволит появится опасному потенциалу на сенсорной пластине. Полевой транзистор откроется под воздействием напряжения питания, которое наводится на сенсор от руки. Резистор R3 шунтирует вход 3 триггера. Триггер переключается во время каждого положительного сигнала на третьем входе. Если на первом выходе триггера логический ноль, биполярный транзистор закрыт и освещение отключено. При появление логической единицы, транзистор и тиристор открыты и свет горит.

Сенсорный датчик можно изготовить из любого металла диаметром не менее 30 мм. Эта схема обеспечивает включение и выключение освещения мощность не более 60Вт. При большей мощности, тиристор потребуется установить на радиаторе.

Управлять освещением можно двумя способами. Первый, подносим руку к оптическому датчику на десять сантиметров. Второй, с помощью пульта дистанционного управления ИК излучения.



Реле можно взять практически любое, главное чтоб напряжением срабатывания лежало в диапазоне от 6 до 12 вольт. Сенсором является кусочек фольгированного текстолита. Оба транзистора можно заменить на КТ315 или КТ3102. Диод любой импульсный на напряжение от 100 вольт, можно взять и .

Схема работает как усилитель сигнала - при касании сенсора за счет внутреннего сопротивления человека VT1 открывается, а за ним и VT2,срабатывает реле и замыкает цепь в которую впринципе можно подключить любую нагрузку (смотри ). Контакты реле служат выключателем, один из выводов этих контактов подключается в сеть 220, а другой к нагрузке, например лампы освещения.

Выключатель подойдет для сенсорного управления любой нагрузкой, практически независимо от мощности. В случае питания маломощных нагрузок с низковольтным питанием, реле можно исключить, а второй транзистор заменить на более мощный, например КТ819.

Универсальный таймер используется для генерации повторяющихся и одиночных импульсов со стабильными временными характеристиками.

NE555 в данном варианте работает в режиме компаратора. При прикосновении к сенсорным пластинам произойдет переключение компаратора, выход которого подсоединен к двум светодиодам. Так как максимальный ток NE555 составляет 200 мА, то вместо светодиодов можно подключить реле для управления нагрузкой. Напряжение питания конструкции может быть в диапазоне от 5 до 15 вольт.

В линейке большинства сенсорных радиоэлектронных устройств, в том числе и сенсорный выключатель света , особое положение имеют узлы, использующие прямо от осветительной электросети в 220 В.

Подобные конструкции имеют в своем составе минимум радиодеталей, легки в изготовлении и им не нужно внешнего источника питания. Поэтому они достаточно эффективны, значительно чувствительнее и надежны в эксплуатации.

Сенсорные устройства, хотя и не имеют гальванической развязки с электросетью и порой, это пугает радиолюбителей кажущейся опасностью поражения током от сенсора, совершенно безопасны и не могут нанести вред здоровью человека.

Единственное на что следует обратить внимание, так это на то, что монтаж и настройку сенсорного выключателя следует выполнять при полностью обесточенном устройстве, а во включенном состоянии допускается касание только сенсорной пластины.

Ниже приведена схема сенсорного выключателя света . Его принцип работы ни чем особым не отличается от устройств, построенных на триггере. Устройство переводит триггер в одно из устойчивых состояний и соответственно включает свет при первом касании к сенсорному датчику E1 и при повторном касании переводит его в другое состояние и тем самым выключится свет.

Продолжительность нахождения триггера в любом из двух устойчивых состояний ничем не ограничена, до тех пор, пока на устройство подано напряжение питания.

Описание работы выключателя света

Модуль триггера построен по типовой схеме на логической интегральной микросхеме DD1 К561ТМ2. В схеме использован только один из двух имеющихся элементов данной микросхемы. С выхода (1) микросхемы DD1 управляющий сигнал идет на усилитель тока построенного на транзисторе VT2. Управляющий вывод тиристора VS1 подключен к эммитеру VT1 и при достижении на нем напряжения в 3В тиристор открывается, тем самым включая свет.

Поскольку полевой транзистор VT1 обладает очень большим сопротивлением перехода сток-исток-затвор, плюс в цепи сенсора включены мегаомные резисторы R1 и R2, то это препятствует появлению напряжения электросети на сенсорной пластине. Транзистор VT1 открывается под воздействием напряжения электросети, которое наводится на сенсор от руки человека.

Резистор R3 шунтирует вход 3 триггера DD1. Триггер изменяет состояние во время каждого положительного сигнала на входе 3. По причине этого сигнал на его выходе 1 изменяется на противоположный.

В то время, когда на выходе 1 триггера DD1 бывает лог.0, транзистор VT2 заперт и нагрузка отключена. При присутствии лог.1 на выходе 3, транзистор и соответственно тиристор открыты и в результате этого нагрузка подключается к электросети. При рабочих деталях и безошибочном монтаже устройство начинает работать сразу и в настройке не нуждается.

Детали сенсорного выключателя

Все резисторы типа МЛТ или С2-33. Транзистор VT1 — КП501 с любой буквой, или же возможно применить КП7131А9. Стабилитрон VD1 имеющий напряжение стабилизации 6…12В можно заменить на Д814А, КС 175А, Д808. Оксидный конденсатор С1 — К50-24, К50-29. Выпрямительные диоды VD2- VD5 с обратным напряжением не менее 300В заменимы диодами Д112-16, КД226В. Электролампа накаливания HL1 рассчитана на напряжение 220В. Транзистора VT2 возможно заменить на КТ815Б — КТ815Г, КТ940Б — КТ940Г, КТ630А — КТ630В.

Сенсорный выключатель собирают на и устанавливают в подходящем по размеру корпусе из пластика. При пайке элементов нужно добиться, чтобы выводы радиодеталей были короткими (для ослабления воздействия помех).

Если возникнет необходимость изменить чувствительность сенсора, то это можно сделать путем подбора необходимого сопротивления R2. можно изготовить из любого металла диаметром не менее 3 см.

Данный сенсорный выключатель света обеспечивает включение и выключение источника освещения имеющего мощность не более 60Вт. При большей мощности, тиристор необходимо разместить на радиаторе.

Электромагнитные помехи могут нарушать работу сотовых телефонов и ухудшать качество приема сигнала. Но именно они могут стать ключом к преобразованию традиционных ЖК-дисплеев в с управлением жестами.

Группа исследователей из компьютерной лаборатории Вашингтонского университета разработала способ превращения обычного жидкокристаллического дисплея (LCD) в сенсорный экран методом электромагнитной интерференции. Технология uTouch подразумевает использование простого сенсора и программного обеспечения. В основе данной технологии лежит слабое электромагнитное излучение, источником которого является потребительская электроника.

«Окружающие нас устройства являются источником всех этих сигналов. Но люди не придают им значения, поскольку воспринимают их как помехи», - говорит исследователь и соавтор работы Сидхант Гупта.

Если для планшетных компьютеров и смартфонов сенсорные экраны успели стать нормой, то в телевизионных панелях и компьютерных мониторах они только начинают получать распространение.

Существующие методики превращения пассивных дисплеев в чувствительные экраны, как правило, полагаются на камеры или другие датчики. Однако такое решение не всегда практично. Результаты последнего исследования будут представлены в рамках майской научной конференции в Париже, где будут обсуждаться вопросы взаимодействия человека и компьютера.

Авторы исследования отмечают, что измеряли и анализировали характер сигналов, поступающих от ЖК-дисплеев при поднесении к экрану руки. Эти сигналы регистрируются как электромагнитные помехи, а их измерение может быть произведено с помощью 5-долларового датчика, подключаемого к домашней розетке.

Датчик собирал информацию об электромагнитных помехах и отправлял ее на подключенный к системе компьютер со специальным программным обеспечением. Программа использовала метод машинного обучения для предугадывания сигнала, который распознается как шум, или как один из пяти установленных жестов. После регистрации прикосновения или жеста экран выполнял команду пользователя.

«Мы пытаемся лучше понять характер изменения сигнала, его интенсивность», - говорит Гупта.

Каждый дисплей создает свои собственные электромагнитные помехи. Датчик способен видеть разницу между ними. Это делает возможным научить обычные жидкокристаллические дисплеи распознавать прикосновения и жесты.

Но у технологии uTouch есть свои ограничения. Данным способом нельзя превратить обычный дисплей в интерактивный экран iPhone или -смартфона. Устройство реагирует на несложные жесты, которые воспроизводят видео, запускают и останавливают приложения. Более сложные движения пальцев по экрану ему пока непонятны.

Исследователи не планируют коммерциализировать технологию, но, по словам Гупты, необходимые комплектующие имеются в свободной продаже, а все алгоритмы рассмотрены в докладе. Поэтому при желании систему можно собрать самостоятельно.

Команда продолжит работу над совершенствованием технологии uTouch.

«Умирающий» рынок ПК можно спасти .