Вирусы. Механизмы развития вирусной инфекции Тропизм вирусов

В связи с тем, что вирусы являются патогенами внутриклеточными, каждый представитель мира вирусов имеет тропность к определенному типу клеток.

Тропизм вируса определяется наличием на клетке - мишени рецептора для данного вируса, а также возможность генома вируса встроиться в геном клетки. Рецепция в свою очередь определяет: а) конкретный вирус взаимодействует только с определенными рецепторами, б) на клетке могут быть рецепторы для различных типов вирусов и в) рецепторы для определенного вируса могут быть на клетках различных типов. Рецепторную функцию выполняют различные структуры (лиганды): белки, липиды, углеводные компоненты белков и липидов..

Выбор лабораторных животных зависит от вида вируса. Лабораторные животные являются биологической моделью. Иногда приходится проводить 3-5 «слепых», бессимптомных пассажей, прежде чем удастся адаптировать вирус к лабораторным условиям. Однако, к некоторым вирусам лабораторные животные не чувствительны, в этом случае приходится использовать естественно восприимчивых животных. Как, например, при чуме свиней и инфекционной анемии лошадей.

Выбор метода заражения лабораторных животных зависит от тропизма вируса. Так, при культивировании нейротропных вирусов животных заражают в мозг; респираторных интранозально, интратрахеально; дерматропных - подкожно и внутрикожно. Заражение производят с соблюдением правил асептики и антисептики. Различают много способов введения вируссодержащего материала в организм животных: - Подкожный; - Интрацеребральный; - Внутрикожный; - Интраперитониальный; - Внутримышечный; - Интраокулярный; - Внутривеннвй; - Интранозальный; - Алиментарный;

После заражения животных метят, помещают их в изолированный бокс и ведут наблюдение в течение 10 суток. Гибель животного в первые сутки после заражения считается неспецифичной и в дальнейшем не учитывается. 3 признака указывают на результативность заражения: - наличие клинических признаков - гибель животного - патологоанатомические изменения (величины, формы, цвета и консистенции органа)



Культивирование вирусов на куриных и перепелиных эмбрионах в последнее время получило широкое распространение как один из наиболее простых и надежных методов культивирования и диагностики многих вирусов и некоторых бактерий - бруцеллы, риккетсии, вибрионы. Многие вирусы человека и животных способны культивироваться в развивающихся куриных эмбрионах. Эмбриональная ткань, особенно оболочки эмбриона, богатые тканями зародышевого эпителия, является благоприятной средой для размножения многих вирусов. Вирусы, имеющие эпителиотропные свойства (оспа, ИЛТ и др.), успешно развиваются на хорионаллантоисной мембране, вызывая макроскопически видимые изменения. Различные представители миксовирусов (грипп, болезнь Ньюкасла, чума плотоядных и др.), вирусы инфекционного бронхита, гепатита утят, арбовирусы и др. хорошо размножаются в эмбрионе при введении материала в аллантоисную полость. Некоторые вирусы успешно культивируются в желточном мешке.

Методы заражения эмбрионов:

(Наиболее часто используют заражение в аллантоисную полость и на хорионаллантоисную оболочку, реже – в амниотическую полость и в желточный мешочек и совсем редко – в тело зародыша и в кровеносные сосуды ХАО. Выбор метода определяется тропизмом вируса, а также целью заражения. При любом методе заражения вводят 0,1–0,2 мл инфекционного материала.)

1.Заражение в аллантоисную полость. При заражении этим методом хорошо размножаются вирусы гриппа, ньюкаслской болезни, ринопневмонии лошадей, везикулярного стоматита и др. Существует несколько вариантов метода.

Первый вариант . Эмбрион фиксируют вертикально тупым концом вверх. В скорлупе на стороне зародыша, а иногда с противоположной зародышу стороны на 5–6 мм выше границы воздушной камеры делают отверстие диаметром около 1 мм. Иглу вводят параллельно продольной оси на глубину 10–12 мм. После инъекции вируссодержащего материала иглу извлекают, а отверстие в скорлупе закрывают каплей расплавленного стерильного парафина.

Второй вариант. Сделанное в скорлупе над воздушной камерой отверстие используют лишь для выхода части воздуха. Отверстие же для самого заражения делают на участке бессосудистой зоны хорионаллантоисной оболочки (ХАО) со стороны зародыша. Иглу вводят на глубину не более 2–3 мм. Инъецируют инфицирующую жидкость в объеме 0,1–0,2 мл и закрывают отверстие парафином

2. Заражение на хорионаллантоисную оболочку . Этот метод заражения куриных эмбрионов чаще используют для культивирования эпителиотропных и пантропных вирусов оспы, инфекционного ларинготрахеита птиц, чумы плотоядных, болезни Ауески, катаральной лихорадки овец и др.

Такое заражение может быть выполнено через естественную или искусственную воздушную камеру.

Для заражения через естественную воздушную камеру эмбрион помещают в штатив вертикально тупым концом вверх и в скорлупе против центра воздушной камеры вырезают круглое окно диаметром 15–20 мм. Через это окно пинцетом снимают подскорлупную оболочку. На обнажившийся участок ХАО наносят 0,2 мм вируссодержащей суспензии, отверстие закрывают лейкопластырем или реже покровным стеклом, укрепив его расплавленным парафином.

Заражение через искусственную воздушную камеру применяют чаще первого, так как оно обеспечивает контакт вируссодержащего материала с большей поверхностью ХАО и, следовательно, ведет к образованию большего количества вируса.

Для заражения эмбриона этим методом его помещают в штатив горизонтально зародышем вверх. В скорлупе делают два отверстия: одно небольшое над центром воздушной камеры (предназначено для отсасывания из нее воздуха), а другое диаметром 0,2–0,5 см сбоку, со стороны зародыша. Сложность метода в том, что, делая второе отверстие, необходимо осторожно снять вначале кусочек скорлупы, затем скользящим движением, не повреждая ХАО, сдвинуть подскорлупную оболочку в сторону так, чтобы через образовавшийся дефект мог пройти воздух. После этого резиновой грушей через первое отверстие отсасывают воздух из естественной воздушной камеры (рис. 19, а).В результате через боковое отверстие наружный воздух устремляется внутрь, образуя искусственную воздушную камеру, дном которой является ХАО

Через боковое отверстие на поверхность ХАО наносят инфекционную жидкость и отверстие закрывают кусочком лейкопластыря. Закрывать первое отверстие нет необходимости, так как внутренний листок подскорлупной оболочки при этом методе заражения не нарушается и продолжает выполнять роль барьера для микрофлоры окружающей среды.

Дальнейшую инкубацию эмбрионов, зараженных этим методом, проводят в горизонтальном положении боковым отверстием вверх.

3.Заражение в желточный мешок. Большей частью им пользуются для размножения хламидий, а также вирусов болезни Марека, ринопневмонии лошадей, катаральной лихорадки овец и др. Заражают эмбрионы 5–7-дневного, а иногда и 2–3-дневного возраста (вирус лихорадки долины РИФ). Используют два варианта заражения.

Первый вариант. Эмбрионы помещают в штатив в вертикальном положении. Делают отверстие в скорлупе над центром воздушной камеры и вводят иглу на глубину 3,5–4 см под углом 45° к вертикальной оси в направлении, противоположном месту нахождения зародыша

Второй вариант. Иногда аналогичный путь заражения осуществляется на горизонтально укрепленном в штативе эмбрионе; при этом зародыш находится внизу, а желток–над ним. Отверстие в скорлупе закрывают каплей расплавленного парафина.

4.Заражение в амниотическую полость. Для этой цели используют эмбрионы 6–10-дневного возраста. Метод используется при культивировании вирусов гриппа, ньюкаслской болезни, ринопневмонии лошадей и др. Есть два способа заражения.

Закрытый способ . Заражение проводят в затемненном боксе. Яйцо помещают на овоскопе в горизонтальном положении зародышем вверх. Через отверстие в скорлупе над воздушной камерой вводят иглу с затупленным концом по направлению к зародышу. Доказательством того, что игла проникла в амнион, служит движение тела зародыша в направлении передвижения.

Открытый способ. Скорлупу над воздушной камерой срезают так, чтобы образовалось окно диаметром 1,5–2,5 см. Через него пинцетом под контролем глаза снимают подскорлупную оболочку. Затем анатомический (14 см) пинцет с сомкнутыми браншами ведут, продавливая хорионаллантоисную оболочку по направлению к зародышу. Когда пинцет достигнет его, бранши размыкают, захватывают амниотическую оболочку вместе с ХАО и подтягивают к окну. Удерживая левой рукой пинцет с фиксированной в нем оболочкой амниона, вводят вируссодержащий материал. Далее все оболочки опускают, окно закрывают лейкопластырем и эмбрион инкубируют в вертикальном положении.

5. Заражение в кровеносные сосуды ХАО. При овоскопировании 11– 13-дневных эмбрионов отмечают крупный кровеносный сосуд. По его ходу удаляют участок скорлупы, наносят 1–2 капли спирта, что делает на некоторое время подскорлупную оболочку прозрачной. Под контролем глаза на овоскопе иглу вводят в сосуд, что подтверждается его подвижностью при небольших боковых движениях иглы. Обнаженный участок подскорлупной оболочки закрывают кусочком лейкопластыря.

Можно материал в сосуды ввести и несколько отличающимся способом: срезают скорлупу над воздушной камерой, подскорлупную оболочку смачивают спиртом и в ставшие видными сосуды ХАО вводят материал. Отверстие закрывают кусочком стерильного лейкопластыря.

6.Заражение в тело зародыша. Для заражения используют эмбрионы 7–12-дневного возраста. Известно два варианта метода.

Первый вариант. Заражают так же, как в амнион закрытым способом, с той лишь разницей, что берут острую иглу и на овоскопе показателем попадания иглы в тело считают подчинение зародыша движениям иглы.

Второй вариант . Заражают так же, как в амнион открытым способом: через окно в скорлупе подтягивают пинцетом тело зародыша. Материал вводят в головной мозг или определенные участки тела. При таких методах заражения бывает значительный процент неспецифической гибели эмбрионов.

Воздушно-капельный путь передачи, определяющий главные черты эпидемического процесса - вовлеченность всех возрастных групп Тропность вирусов к тканям верхних (в подавляющем большинстве) и нижних отделов дыхательных путей Сходные клинические проявления инфекционного процесса – простудное заболевание Сезонность, географические и климатические особенности Большая восприимчивость детей и подростков


51 серотипа) Риновирусы (> 100 типов) Коронавирусы (229Е, ОС43) Метапневмовирус - 2001г. Бокавирус – 2005" title="«Классические» возбудители ОРИНовые возбудители ОРИ Вирусы гриппа (А, В и С) РС-вирусы (А и В) Вирусы парагриппа (1, 2, 3, 4А, 4В) Аденовирусы (>51 серотипа) Риновирусы (> 100 типов) Коронавирусы (229Е, ОС43) Метапневмовирус - 2001г. Бокавирус – 2005" class="link_thumb"> 3 «Классические» возбудители ОРИНовые возбудители ОРИ Вирусы гриппа (А, В и С) РС-вирусы (А и В) Вирусы парагриппа (1, 2, 3, 4А, 4В) Аденовирусы (>51 серотипа) Риновирусы (> 100 типов) Коронавирусы (229Е, ОС43) Метапневмовирус г. Бокавирус – 2005г. 51 серотипа) Риновирусы (> 100 типов) Коронавирусы (229Е, ОС43) Метапневмовирус - 2001г. Бокавирус – 2005"> 51 серотипа) Риновирусы (> 100 типов) Коронавирусы (229Е, ОС43) Метапневмовирус - 2001г. Бокавирус – 2005г."> 51 серотипа) Риновирусы (> 100 типов) Коронавирусы (229Е, ОС43) Метапневмовирус - 2001г. Бокавирус – 2005" title="«Классические» возбудители ОРИНовые возбудители ОРИ Вирусы гриппа (А, В и С) РС-вирусы (А и В) Вирусы парагриппа (1, 2, 3, 4А, 4В) Аденовирусы (>51 серотипа) Риновирусы (> 100 типов) Коронавирусы (229Е, ОС43) Метапневмовирус - 2001г. Бокавирус – 2005"> title="«Классические» возбудители ОРИНовые возбудители ОРИ Вирусы гриппа (А, В и С) РС-вирусы (А и В) Вирусы парагриппа (1, 2, 3, 4А, 4В) Аденовирусы (>51 серотипа) Риновирусы (> 100 типов) Коронавирусы (229Е, ОС43) Метапневмовирус - 2001г. Бокавирус – 2005">


Вирус гриппа А: поражает человека и животных; высокая антигенная изменчивость; причина эпидемий и пандемий. Вирус гриппа В: циркулируют только в человеческой популяции; слабая антигенная изменчивость; описаны только локальные эпидемии. Вирус гриппа С: инфицирует только человека; слабая антигенная изменчивость; эпидемий не вызывает.


Свойства вируса гриппа зависят от антигенной структуры гемагглютинина (Н) и нейраминидазы (N). Известно 15 субтипов гемагглютинина (Н1-Н15) и 9 субтипов нейраминидазы (N1-N9), которые могут реассортировать в различных комбинациях. ИСТОРИЯ: 1918 г.- пандемия вирус гриппа H1N1 Испанка 1957 г. - вирус гриппа H2N2 Азиатский грипп) 1968 г. – вирус гриппа H3N2 «Гонконгский грипп» 1977 г. – вирус гриппа H1N1 Средняя пандемия Н5N1-птичий грипп гг. – вирус гриппа H1N г. - вирус гриппа А/Нsw1/ N1(A/California/04/2009 Свиной грипп)


Эпидемический процесс Источник возбудителя – Источник возбудителя – больной с первых часов и в течение всего заболевания, изредка – в инкубационном периоде; реконвалесцент (иногда возможна длительная персистенция вируса – до дней) Восприимчивость Восприимчивость – высокая, инфекционный процесс в клинически выраженной форме (возможны бессимптомные формы) Эпидемическое и пандемическое распространение


Вирус гриппа передается легко и незаметно: при разговоре, кашле, чихании Риск заболеть есть у каждого. Самый высокий риск распространения инфекции в коллективах (1 больной здоровых) заражает


Вирусы гриппа прикрепляются к эпителию верхних дыхатель- ных путей и эпителиоцитам при помощи Гемагглютинина. Нейраминидаза разрушает клеточные мембраны и вирус проникает внутрь клетки (эндо- цитоз). Вирусная РНК проникает в клеточное ядро и клетка начи- нает производить вирусные белки. ПАТОГЕНЕЗ ГРИППА


При попадании в верхние дыхательные пути 1-ой вирус- ной частицы уже через 8 час. количество вирусов достигает 103, а концу первых суток – 1023!!! - Попадая в кровь, вирус разносится по организму, поражая эпителий ВДП и энтероциты. - Вирус активирует систему протеолиза, повреждает эндотелий капилляров, повышает проницаемость сосудов, угнетает иммунную систему, что способствует возникновению осложнений. - Пик концентрации вируса приходится на первые сутки заболевания, затем репликация замедляется вследствие нарастания интерлейкинов в назальном секрете, крови и появления вируснейтрализующих антител. ПАТОГЕНЕЗ ГРИППА




Грипп опасен осложнениями, которые подразделяют на две группы: 1) связанные непосредственно с течением гриппа; 2) связанные с присоединением бактериальной инфекции. I группа (1-2 сутки болезни): ОРДС, геморрагический отек легких, серозные менингиты и менингоэнцефалиты, инфекционно-токсический шок, фебрильные судороги. II группа (3-5 сутки болезни): пневмония, отит, синусит, гломерулонефрит, гнойный менингит и менингоэнцефалит, сепсис. Бактериальные осложнения обычно развиваются после некоторого улучшения состояния больного – вновь повышается температура, появляется кашель с мокротой, боли в груди, другие симптомы общей интоксикации.


Лихорадка, озноб; головная боль; боль в области глазных яблок; боль в мышцах спины и конечностей; боль в суставах; респираторные симптомы: сухой кашель, боль в горле, ринит, охриплость, першение в горле, ложный круп (у детей); общая слабость, разбитость.


За 80 лет, прошедших со времен открытия вирусов гриппа, детально изучены: - особенности репродукции вирусов; - закономерности их изменчивости; - патогенез инфекции; - реакции естественного и адаптивного иммунитета. Здравоохранением разработана и ежегодно осуществляется система мероприятий по борьбе с гриппом, включающая: - экспресс-диагностику; - профилактические прививки; -раннюю терапию сезонных подъемов заболеваемости, - экстренную профилактику; - помощь на дому; - госпитализацию по клиническим показаниям. Почему же грипп продолжает оставаться сложно контролируемой инфекцией?


Причины плохой контролируемости гриппа и других ОРИ ПричиныСледствия 1.Убиквитарность, скорость распространения (особенно для гриппа). Эпидемии, пандемии 2. Выраженная контагиозность вирусов Массовость поражений 3.Полиоэтиологичность возбудителейОтсутствие вакцин (за исключением гриппа) против основной массы возбудителей 4. Смешанный характер инфекцийВо время сезонных подъемов заболеваемости циркулирует от 3 и более возбудителей, соотношение которых ежегодно меняется. 5. Постоянный (круглогодичный) высокий фон ОРИ Грипп составляет не более 15%-20% от всей заболеваемости ОРИ 6. Высокий уровень изменчивости антигенных свойств вирусов Ускользание от иммунного ответа, снижение эффективности вакцинопрофилактики 7. Быстро развивающаяся резистентность к препаратам Снижение эффективности терапии 8. Развитие вторичных иммунодефицитовОдна из основных причин многочисленных осложнений и обострений хронических заболеваний 9. ОсложненияПневмонии, синуситы, отиты и др (20-30% случаев) 10. Общее (популяционное) снижение иммунной защиты Повышение чувствительности к инфекциям


Какие существуют методы профилактики гриппа и ОРИ? СПЕЦИФИЧЕСКИЕ НЕСПЕЦИФИЧЕСКИЕ Вакцины Лекарственные средства Народные средства жаропонижающие, противокашлевые, аскорбиновая кислота, поливитамины, антигистамины, интерферрон иммуноглобулин, ремантадин, амантадин, арбидол




Современные вакцины против гриппа Цельновирионная вакцина это цельные инактивированные вирусные частицы Грипповак ИГВ Расщепленная (сплит-) вакцина это высокоочищенные разрушенные вирусы Ваксигрип Флюваксин Флюарикс Субъединичная вакцина содержит только гемагглютинин и нейраминидазу Гриппол плюс Гриппол Инфлювак


Основные характеристики современных вакцин обладают высокой эффективностью и способностью к усилению защитных сил организма; минимум противопоказаний для их использования; можно применять во всех возрастных группах, в том числе для прививки против гриппа детей, начиная с 6-месячного возраста; могут применяться у кормящих грудью и беременных женщин.


Вакцинация среди населения позволила за период с ноября 2012 г. по март 2013г. предупредить Более 49 тысяч случаев гриппа более 60 тысяч случаев ОРИ не гриппозной этиологии сэкономить Сумму, эквивалентную 21,4 миллионам долларов На каждый вложенный доллар 15,4 доллара в т.ч. 6 тысяч осложненных случаев в т.ч. 2 тысячи, которые потребовали бы госпитализации Более 155 тысяч обращений за амбулаторной медицинской помощью








Проникновение вируса в клетку обусловлено, с одной стороны, качеством рецепторов оболочки клетки (мукопротеиды или липопротеиды), а с другой стороны, качеством «фермента проникновения» вируса. Так, вирусы гриппа и аденовирусы, содержащие специфические энзимы (нейраминазу, муциназу), реагируют с мукопротеидными (полисахаридными) рецепторами и легко проникают в цитоплазму и ядро эпителиальных клеток дыхательных путей.

Вирус полиомиелита реагирует с липопротеидными рецепторами, имеющими сродство с богатой липидами мозговой тканью, и проникает в цитоплазму нейрона.

Ферменты клетки разрушают белки — капсомеры вируса, вследствие чего происходит высвобождение в цитоплазме вирусной нуклеиновой кислоты и включение ее в ультраструктуры клетки хозяина.

Нарушается белковый обмен клетки. Возникает гиперплазия и деструкция митохондрий, канальцев, эндоплазматической сети, рибосом, направленных теперь на синтез структурных компонентов вируса с формированием вирионов. Репродукцию нуклеиновой кислоты обеспечивают в ядре РНК- и ДНК-полимеразы, а на рибосомах эндоплазматической сети строятся белки — капсомеры вируса. Пластинчатый аппарат (Гольджи) гибнет, а вместе с этим прекращается и специфическая функция клетки.

Описанные процессы приводят к извращению белкового обмена в клетке, возникает белковая дистрофия, в цитоплазме клетки происходит накопление денатурированного белка, процесс заканчивается коагуляционным или коллимационным некрозом клетки.

При инфекционном процессе любой этиологии
— бактериальной или вирусной — возникают антитела, направленные против возбудителя инфекций. Циркулирующие в крови антитела образуются в ответ на антигенное раздражение в клетках ретикулоэндотелиальной системы, но главным образом в клетках иммунокомпетентных органов, а затем поступают в кровоток.

Соединения антигена с антителом в присутствии комплемента оказывают антимикробное и антитоксическое действие, обеспечивающее на длительный срок послеинфекционный гуморальный иммунитет. В то же время повторное поступление микробного белкового антигена может сенсибилизировать организм и вызывать на высоте сенсибилизации от небольшой дозы, но повторно введенного антигена, аллергическую реакцию и инфекция начинает протекать с явлениями гиперчувствительности замедленного или немедленного типа вплоть до развития анафилаксии.

Эти факты объясняют, почему организм человека, находясь под воздействием факторов внешней среды, в том числе патогенных микробов, при заражении или не заболевает, или заболевает очень тяжелой формой или же очень легкой, клинически едва уловимой формой инфекции (стертые формы). Видимо, все эти различия проявления инфекции зависят не столько от особенностей микроорганизма, сколько от реактивности макроорганизма и степени его сенсибилизации.

Инфекционные болезни изучаются по определенной классификационной схеме, которая учитывает ряд особенностей каждой группы инфекций и выявляет некоторые общие закономерности течения инфекционного процесса.

«Патологическая анатомия», А.И.Струков

То есть направление роста или движения клеток относительно раздражителя (химического, светового и др.).

Если растение под влиянием раздражителя изгибается к источнику раздражителя, то это положительный тропизм , а если оно изгибается в противоположную сторону от раздражителя, то это отрицательный тропизм .

  • Ортотропизм - расположение органа растения вдоль градиента раздражителя.
  • Диатропизм - расположение под прямым углом к градиенту раздражителя.
  • Плагиотропизм - ориентация под любыми другими углами.

В основе тропизма лежит одно из свойств цитоплазмы клетки - её раздражимость, как ответной реакции на различные факторы внешней среды.

Термин «тропизм» в основном применяют при описании автоматизмов поведения растений . Для характеристики простейших автоматизмов, включённых в сложное поведение животных , исследователи употребляют такое понятие как таксисы . Ранее термин «тропизм» нередко употребляли в зоологии в том же смысле, что термин «таксисы».

Двигательные реакции органов растений на ненаправленные факторы воздействия внешней среды называются настии . Обычной причиной, вызывающей настии, является изменение в тканях растения концентрации кальция и хлора .

Тропизм растений

Ответные реакции растений на различные односторонние воздействия раздражителей внешней среды (свет, земное притяжение, химические вещества и др.) заключаются в направленных ростовых и сократительных движениях (изгибах) органов растения, приводящих к изменению его ориентации в пространстве. Ростовые движения зависят от вида раздражителя, механизм действия которого на растения сложен. Эти движения могут возникать в растущих частях растений, как следствие более быстрого роста клеток, расположенных на одной стороне органа растения (стебле , корне , листе). В органах растения возникают растяжения, связанные с асимметричным распределением в них фитогормонов роста растений - ауксина и абсцизовой кислоты и др.

Тропизмы различают в зависимости от вида раздражителя.

Геотропизм

Фототропизм

Хемотропизм

Хемотропизм вызывает движение растений под влиянием химических соединений. Наиболее яркий пример хемотропизма - рост корней в сторону больших концентраций питательных веществ в почве.

Термотропизм

Движение растений или частей растения в ответ на изменение температуры. Типичным примером термотропизма является скручивание листьев рододендрона при понижении температуры. Мимоза стыдливая также проявляет термотропизм в форме сворачивания листочков на общем черешке листа при понижении температуры.

Аэротропизм

Хемотаксические искривления, наблюдаемые на корнях и стеблях различных растений, подвергающихся одностороннему воздействию газообразных веществ (углекислоты, кислорода и других).

Тропизм микроорганизмов

Тропизм у паразитов выражается в свойстве избирать в качестве среды обитания определённые организмы (видовой тропизм ) или органы (органный , или тканевой , тропизм). Видовой тропизм обусловливает круг

Классификация вирусов

Вирусы могут развиваться только в определенных клетках. Тропизм вирусов - это преимущественные системы органов и тканей организма, в клетках которых вирусы способны к репродукции.

По тропизму вирусы подразделяются на:

  • 1. Пантропные (в разных органах и тканях организма)
  • 2. Нейротропные (в нервных клетках - вирус бешенства)
  • 3. Дерматотропные (в клетках кожи - вирус оспы)
  • 4. Эпителиотропные (вирус диареи. Ящура в эпителиальных клетках)
  • 5. Пневмотромные (в клетках дыхательных путей, вирус гриппа, аденовирусы)
  • 6. Гематотропные (в клетках крови, вирус лейкоза)

Современная классификация вирусов основана на фундаментальных (основных) свойствах вирионов, главными из которых являются:

  • 1. тип нуклеиновой кислоты
  • 2. морфология вириона
  • 3. стратегия вирусного генома
  • 4. антигенные свойства белков вируса
  • 1, 2, 4 свойства внешне заметные свойства. Стратегия вирусного генома (3) (нуклеиновая кислота0 это обусловленный особенностями вирусного генетического материала, способ вирусной репродукции. Способ репродукции зависит от вирусного генома.

На основании различных признаков вирусы делятся на: семейства, подсемейства, роды и типы. Причем в основе разделения на семейства лежат два признака:

  • 1. тип нуклеиновой кислоты
  • 2. наличие суперкапсидной оболочки.

Существуют: 7 семейств ДНК-содержащих вирусов, 13 семейств РНК содержащих вирусов.

Названия вирусов (терминология латинская)

Семейство заканчивается на...viridae , подсемейство заканчивается на …virinae , род - на ……virus , тип - применительно к каждому вирусу. Например: Сем. Paramyxoviridae

Род Morbilivirus

Вироиды это агенты, вызывающие болезни растений. Небольшая молекула РНК замкнутая в кольцо (плазмида). РНК может быть в плазмидах. Плазмиды и вироиды совпадают. Отсюда теория, что вирусы являются сбежавшими органоидами (плазмидами).