Принцип работы 3д принтеров. Как это сделано, как это работает, как это устроено. По страницам истории

С начала нового тысячелетия понятие «3D» прочно вошло в нашу повседневную жизнь. В первую очередь, мы связываем его с киноискусством, фотографией или мультипликацией. Но едва ли сейчас найдётся человек, который хотя бы раз в жизни не слышал о такой новинке, как 3D-печать.

Что же это такое и какие новые возможности в творчестве, науке, технике и повседневной жизни несут нам технологии трехмерной печати, мы и попытаемся разобраться в статье, приведенной ниже.

Но сначала немного истории. Хоть и много стали говорить о 3D печати только последние несколько лет, на самом деле эта технология существует уже достаточно давно. В 1984 году компания Charles Hull разработала технологию трёхмерной печати для воспроизведения объектов с использованием цифровых данных, а двумя годами позже дала название и запатентовала технику стереолитографии.

Тогда же эта компания разработала и создала первый промышленный 3D принтер. Впоследствии эстафету приняла компания 3D Systems, разработавшая в 1988 году модель принтера для 3Д печати в домашних условиях SLA – 250.

В том же году компанией Scott Grump было изобретено моделирование плавлеными осаждениями. После нескольких лет относительного затишья, в 1991 году компания Helisys разрабатывает и выпускает на рынок технологию для производства многослойных объектов, а через год, в 1992, в компании DTM выходит в свет первая система селективного лазерного спаивания.

Затем, в 1993 году основывается компания Solidscape, которая и приступает уже к серийному производству принтеров на струйной основе, которые способны производить небольшие детали с идеальной поверхностью, причём при относительно небольших затратах.

Тогда же Массачусетский университет патентует технологию трёхмерной печати, подобную струйной технологии обычных 2D принтеров. Но, пожалуй, пик развития и популярности 3D печати всё же пришёлся на новый, 21 век.

В 2005 году появился первый , способный печатать в цвете, это детище компании Z Corp под названием Spectrum Z510, а буквально через два года появился первый принтер, способный воспроизводить 50% собственных комплектующих.

В настоящее время круг возможностей и сфер применения 3Д печати постоянно растёт. Этим технологиям оказалось подвластно всё - от кровеносных сосудов до коралловых рифов и мебели. Впрочем, о сферах применения данных технологий мы поговорим чуть позже.

Итак, что же представляет из себя печать на 3d принтере?

Вкратце - это построение реального объекта по созданному на компьютере образцу 3D модели. Затем цифровая трёхмерная модель сохраняется в формате STL-файла, после чего 3D принтер, на который выводится файл для печати, формирует реальное изделие.

Сам процесс печати – это ряд повторяющихся циклов, связанных с созданием трёхмерных моделей, нанесением на рабочий стол (элеватор) принтера слоя расходных материалов, перемещением рабочего стола вниз на уровень готового слоя и удалением с поверхности стола отходов.

Циклы непрерывно следуют один за другим: на первый слой материала наносится следующий, элеватор снова опускается и так до тех пор, пока на рабочем столе не окажется готовое изделие.

Как работает 3D принтер?

Применение трехмерной печати – это серьезная альтернатива традиционным методам прототипирования и мелкосерийному производству. Трёхмерный, или 3д-принтер, в отличие от обычного, который выводит двухмерные рисунки, фотографии и т. д. на бумагу, даёт возможность выводить объёмную информацию, то есть создавать трёхмерные физические объекты.

На данный момент оборудование данного класса может работать с фотополимерными смолами, различными видами пластиковой нити, керамическим порошком и металлоглиной.

Что такое 3d принтер?

В основу принципа работы 3d принтера заложен принцип постепенного (послойного) создания твердой модели, которая как бы «выращивается» из определённого материала, о котором будет сказано немного позже. Преимущества 3D печати перед привычными, ручными способами построения моделей - высокая скорость, простота и относительно небольшая стоимость.

Например, для создания или какой-либо детали вручную может понадобиться довольно много времени - от нескольких дней до месяцев. Ведь сюда входит не только сам процесс изготовления, но и предварительные работы - чертежи и схемы будущего изделия, которые всё равно не дают полного видения окончательного результата.

В итоге значительно возрастают расходы на разработку, увеличивается срок от разработки изделия до его серийного производства.

3D технологии же позволяют полностью исключить ручной труд и необходимость делать чертежи и расчёты на бумаге - ведь программа позволяет увидеть модель во всех ракурсах уже на экране, и устранить выявленные недостатки не в процессе создания, как это бывает при ручном изготовлении, а непосредственно при разработке и создать модель за несколько часов.

При этом возможность ошибок, присущих ручной работе, практически исключается.

Что такое 3d принтер: видео

Существуют различные технологии трёхмерной печати. Разница между ними заключается в способе наложения слоёв изделия. Рассмотрим основные из них.

Наиболее распространенными являются SLS (селективное лазерное сплетение), НРМ (наложение слоев расплавленных материалов) и SLA (стереолитиография).

Наиболее широкое распространение благодаря высокой скорости построения объектов получила технология стереолитографии или SLA.

Технология SLA

Технология работает так: лазерный луч направляется на фотополимер, после чего материал затвердевает.

В качестве фотополимера используется полупрозрачный материал, который деформируется под действием атмосферной влаги.

После отвердевания он легко поддаётся склеиванию, механической обработке и окрашиванию. Рабочий стол (элеватор) находится в ёмкости с фотополимером. После прохождения через полимер лазерного луча и отвердения слоя рабочая поверхность стола смещается вниз.

Технология SLS

Спекание порошковых реагентов под действием лазерного луча – оно же SLS - единственная технология 3D печати, которая применяется при изготовлении форм, как для металлического, так и пластмассового литья.

Пластмассовые модели обладают отличными механическими качествами, благодаря которым они могут использоваться для изготовления полнофункциональных изделий. В SLS технологии используются материалы, близкие по свойствам к маркам конечного продукта: керамика, порошковый пластик, металл.

Устройство 3d принтера выглядит следующим образом: порошковые вещества наносятся на поверхность элеватора и спекаются под действием лазерного луча в твёрдый слой, соответствующий параметрам модели и определяющий её форму.

Технология DLP

Технология DLP – новичок на рынке трехмерной печати. Стереолитографические печатные аппараты сегодня позиционируются, как основная альтернатива FDM оборудованию. Принтеры данного типа используют технологию цифровой обработки светом. Многие задаются вопросом, чем печатает 3d принтер данного образца?

Вместо пластиковой нити и нагревающей головки для создания трехмерных фигур используются фотополимерные смолы и DLP-проектор.

Ниже вы можете увидеть, как работает 3d принтер видео:

Впервые услышав про DLP 3d принтер, что это такое – вполне резонный вопрос. Несмотря на замысловатое название, устройство почти не отличается от других настольных печатных аппаратов. К слову, его разработчики, в лице компании
QSQM Technology Corporation, уже запустили в серию первые образцы высокотехнологичного оборудования. Выглядит оно следующим образом:

Технология EBM

Стоит отметить, технологии SLS/DMLS – далеко не единственные в области . В настоящее время для создания металлических трехмерных объектов широко используется электронно-лучевая плавка. Лабораторные исследования показали, что использование металлической проволоки для послойного наплавления при изготовлении высокоточных деталей малоэффективно, поэтому инженеры разработали специальный материал – металлоглину.

Металлическая глина, использующаяся в качестве чернил во время электронно-лучевой плавки изготавливается из смеси органического клея, металлической стружки и определенного количества воды. Для того чтобы превратить чернило в твердый объект, его нужно нагреть до температуры, при которой клей и вода выгорят, а стружка сплавится между собой в монолит.

EBM 3d принтер: как работает

Примечательно, что данный принцип также используется при работе с SLS принтерами. Но в отличие от них, EBM-аппараты генерируют для плавки металлоглины направленные электронные импульсы вместо лазерного луча. Нужно сказать, что данный метод обеспечивает высокое качество печати и отличную прорисовку мелких деталей.

На сегодняшний день продаются только промышленные принтеры, использующие EBM технологию. Вот как выглядит один из них:

На видео, представленном ниже, наглядно продемонстрированы возможности 3d принтера, приспособленного для электронно-лучевой плавки:

Технология НРМ (FDM) HPM

Даёт возможность создавать не только модели, но и конечные детали из стандартных, конструкционных и высокоэффективных термопластиков. Это единственная технология, использующая термопластики производственного класса, обеспечивающие не имеющую аналогов механическую, термическую и химическую прочность деталей.

Печать по технологии НРМ выгодно отличается чистотой, простотой использования и пригодностью для применения в офисе. Детали из термопластика устойчивы к высоким температурам, механическим нагрузкам, различным химическим реагентам, влажной или сухой среде.

Растворимые вспомогательные материалы позволяют создавать сложные многоуровневые формы, полости и отверстия, которые было бы проблематично получить обычными методами. 3D-принтеры, действующие по технологии НРМ, создают детали слой за слоем, разогревая материал до полужидкого состояния и выдавливая его в соответствии созданными на компьютере путями.

Для печати по технологии НРМ используется два различных материала - из одного (основного) будет состоять готовая деталь, и вспомогательного, который используется для поддержки. Нити обоих материалов подаются из отсеков 3D-принтера в печатающую головку, которая передвигается зависимости от изменения координат X и Y, и наплавляет материал, создавая текущий слой, пока основание не переместится вниз и не начнется следующий слой.

Когда 3D-принтер завершит создание детали, остаётся отделить вспомогательный материал механически, или растворить его моющим средством, после чего изделие готово к использованию.

Интересно, что в наши дни популярностью пользуются не только автоматические настольные HPM принтеры, но и приспособления для ручной печати. Причем, правильно было бы назвать их не печатными устройствами, а ручками для рисования трехмерных объектов.

Ручки сделаны по той же схеме, что и принтеры, использующие технологию послойного наплавления. Пластиковая нить подается в ручку, где плавится до нужной консистенции и тут же выдавливается через миниатюрное сопло! При должной сноровке получаются вот такие оригинальные декоративные фигурки:

Ну и конечно, так же, как и технологии, отличаются друг от друга и сами принтеры. Если у вас принтер, работающий по SLA, то технологию SLS на нём применить будет невозможно, т. е. каждый принтер создан только под определённую технологию печати.

Цветная 3D-печать

Данная технология единственная в своем роде, которая позволяет получать объекты во всем доступном диапазоне оттенков. Примечательно, что окрашивание изделий происходит непосредственно во время их изготовления. С ее помощью получаются фотореалистичные объекты. Это и вызывает неподдельный интерес к ней со стороны дизайнеров.

Зачастую в качестве исходного материала применяют порошок, созданный на основе гипса. Щетки и ролики формируют не очень толстый слой расходника. Дальше с помощью подвижной головки на необходимые участки наносятся микрокапли клееобразного вещества (перед этим его окрашивают в нужный цвет). Оно напоминает по своему составу цианокрилат. Послойно создается готовый разноцветный объект. Финальная обработка изделия цианоакрилатом обеспечивает ему блеск и жесткость.

Промышленные и настольные цветные 3D-принтеры

Современный рынок предлагает различные многоцветные 3D-принтеры. С их помощью создаются разноцветные объекты в домашних условиях. Большинство агрегатов предназначено для профессионального использования.

Профессиональная цветная печать на 3D-принтере осуществляется с помощью:

1. Линейки Zрrintеr от известной торговой марки 3D Sуstems. Эти устройства могут создавать габаритные разноцветные объекты. Снабжаются 5-ю картриджами и системой автоматической загрузки порошка. Техника практически на 100% автоматизирована, поэтому настройка или контроль процесса печати не обязателен. Весят модели около 340 килограмм. Стоимость в пределах 90-130 тысяч долларов.

2. Полноцветный 3D-принтер Мсor Iris. Разноцветные изделия создаются путем склеивания отдельных бумажных клочков. Данный агрегат от Мсоr Тесhnologies Ltd создает объемные фотореалистичные модели с неплохими показателями прочности. Может генерировать до миллиона цветов. Стоит 15 тысяч долларов.

Настольные модели для домашнего использования:

1. Цветной 3D-принтер 3D Тоuch. Данный агрегат работает по технологии FDМ. Модель может снабжаться одной, двумя или даже тремя экструзионными головками. Работает с АВS или РLА-пластиком. Весит ни много ни мало 38 килограмм. Стоимость – около 4 тысяч долларов.

2. 3D-принтер трехцветный ВFB 3000 РАNTHER – первый цветной принтер, который был выпущен на рынок. Сегодня его стоимость составляет около 2,5 тысяч долларов. В качестве рабочего материала применяется стандартная пластиковая нить. Для работы понадобится нить трех цветов.

3. Одна из самых дешевых моделей – РroDеsk3D. Для создания изделий используется система из пяти картриджей. Возможна работа с РLA или АВS-пластиком. Принтер снабжен системой автоматической настройки. Стоит всего 2 тысячи долларов. К сожалению, не может похвастаться высокими показателями разрешения печати.

Области применения 3D печати

3D печать открыла большие возможности для экспериментов в таких сферах как архитектура, строительство, медицина, образование, моделирование одежды, мелкосерийное производство, ювелирное дело, и даже в пищевой промышленности.

В архитектуре, например, 3D печать позволяет создавать объёмные макеты зданий, или даже целых микрорайонов со всей инфраструктурой - скверами, парками, дорогами и уличным освещением.

Благодаря используемому при этом дешёвому гипсовому композиту обеспечивается низкая себестоимость готовых моделей. А более 390 тысяч оттенков CMYK позволяют в цвете воплотить любую, даже самую смелую фантазию архитектора.

3d принтер: применение в области строительства

В строительстве есть все основания предполагать, что в недалёком будущем намного ускорится и упростится процесс возведения зданий. Калифорнийскими инженерами создана система 3D печати для крупногабаритных объектов. Она работает по принципу строительного крана, возводящего стены из слоёв бетона.

Такой принтер может возвести двухэтажный дом всего в течение 20 часов.

После чего рабочим останется лишь провести отделочные работы. 3D House Постепенно завоёвывают прочные позиции 3D принтеры и в мелкосерийном производстве.

В основном эти технологии используются для производства эксклюзивных изделий, таких как предметы искусства, фигурки персонажей для ролевых игр, прототипов моделей будущих товаров или каких-либо конструктивных деталей.

В медицине благодаря технологиям трёхмерной печати врачи получили возможность воссоздавать копии человеческого скелета, что позволяет более точно отработать приёмы, повышающих гарантии успешного проведения операций.

Всё большее применение находят 3D принтеры в области протезирования в стоматологии, так как эти технологии позволяют намного быстрее получить протезы, чем при традиционном изготовлении.

Не так давно немецкими учёными была разработана технология получения человеческой кожи. При её изготовлении используется гель, полученный из клеток донора. А в 2011 году учёным удалось воспроизвести живую человеческую почку.

Как видим, возможности, которые открывает 3D печать практически во всех сферах деятельности человека поистине безграничны.

Принтеры, создающие кулинарные шедевры, воспроизводящие протезы и органы человека, игрушки и наглядные пособия, одежду и обувь - уже не плод воображения писателей - фантастов, а реалии современной жизни.

А какие ещё горизонты откроются перед человечеством в ближайшие годы, наверное, это может быть ограничено только фантазией самого человека.

На примере тестовой фигуры «Отверстия и колонны» мы покажем, как правильно подготовить объект и напечатать его на принтере Ultimaker. В первую очередь установите 3D-редактор SketchUp. Затем надо «научить» его понимать распространенный в 3D-печати формат STL. Делается это с помощью плагина, который можно скачать по адресу extensions.sketchup.com . После того как вы скопировали его файл на диск, откройте SketchUp, зайдите в меню «Window | Preferences | Extensions», нажмите на кнопку «Install Extension» и укажите расположение файла плагина.

2 Создаем собственный объект

В стартовом окне SketchUp выберите шаблон «Product design and Woodworking - Millimeters». Программа создаст пространственную систему координат, которую можно увеличивать или уменьшать, вращая колесо мыши, а нажав на него - поворачивать. Красная ось показывает ширину предмета, синяя - высоту, а зеленая - глубину. Чтобы создать прямоугольную форму нашего тестового объекта, сначала вытяните основную фигуру. Для этого на панели инструментов выберите «Restangle».

Особенность программы SketchUp состоит в том, что в начальной точке объекта (в нашем случае - в центре координатной системы) нужно щелкнуть клавишей мыши и, не отпуская ее, тянуть. Установите курсор в области между зеленой и красной координатами.

Чтобы точно задать размеры фигуры, просто введите на клавиатуре «110;40» и нажмите «Enter» - получится прямоугольник с шириной и высотой 110 и 40 мм соответственно. Затем с помощью инструмента «Push/Pull» из двухмерного прямоугольника можно сформировать трехмерный. Щелкните по прямоугольнику и потяните его вверх. Чтобы точно задать высоту в 10 мм, просто введите клавишами значение «10» и затем нажмите «Enter».

3 Уточняем форму


Теперь добавьте колонны и отверстия, на которых принтер должен будет показать точность своей работы. Для этого инструментом «Circle» нарисуйте круги на поверхности прямоугольной фигуры. Чтобы добиться их точного расположения, создайте временные вспомогательные линии и используйте линейку. Точный размер радиуса круга вводится с помощью клавиатуры.

Ряды кругов можно поворачивать на 180° с помощью инструмента «Rotate» и копировать, нажав на клавишу «Ctrl». Теперь инструментом «Pull/Push» с одной стороны прямоугольника нажмите на круги, чтобы получить отверстия, а с другой стороны вытяните их вверх, чтобы получить колонны.

4 От SketchUp - к программе принтера


Ваша модель готова. Щелкните по «File | Export to DXF or STL». Если такого пункта меню нет, это значит, что при установке STL-плагина произошла какая-то ошибка (см. шаг 1). Подтвердите запросы «Export entire model?» и «Export unit: Millimeters». Под «Export to DXF options» выберите формат «stl». Сохраните файл с расширением «.stl». В программе принтера (в нашем примере это приложение Cura для устройства Ultimaker) загрузите модель через меню «File | Load Model file …». После этого задайте такие основные параметры, как качество печати и материал. Зайдя в «File | Save GCode», сохраните модель как готовое задание на печать.

Если в процессе печати что-то пойдет не так, вернитесь к компьютеру и кликните по «Expert | Switch to full settings …» - здесь вы сможете точно подобрать для печатаемого предмета такие настройки, как толщина слоя, степень заполнения основы, свисающих элементов и пустот, а также скорость и температуру печати. Затем скопируйте файл с расширением «.gcode» на карту памяти SD.

5 Обклеиваем печатную платформу


Из руководства к своему принтеру узнайте, следует ли обклеить печатную платформу самоклеющейся пленкой. В случае с Ultimaker это необходимо, так как горячая печатная головка может расплавить платформу, сделанную из оргстекла, и это не позволит снять с нее готовый предмет. Катушка клейкой ленты входит в комплект устройства.

Если она кончится, возьмите вместо нее обычную малярную крепированную ленту (малярный скотч). Выньте печатную пластину и постарайтесь, чтобы полосы ложились на нее без морщин и нахлестов. Лучше всего это удается, если выравнивать следующую полосу по длинной стороне предыдущей и потом плотно прижимать ее.

6 Готовимся и начинаем


Перед каждым процессом печати следует проверить положение печатной платформы и при необходимости откорректировать его. Подробное руководство для принтера (см. wiki.ultimaker.com/Calibrate) занимает многие страницы. В принципе, для вас важно так отрегулировать четыре винта по углам платформы (см. фото справа), чтобы расстояние между печатающей головкой и поверхностью платформы везде было равно толщине обычного листа бумаги.

Вставьте карту SD с сохраненным на ней файлом «.gcode» в контроллер принтера и выберите пункт «Card Menu». На дисплее будут перечислены все файлы с расширением «.gcode», которые устройство обнаружит на карте. Выбрав нужный файл, запустите печать.

7 Устраняем ошибки


При первых попытках печати настоятельно рекомендуется регулярно проверять ход процесса и останавливать его при возникновении проблем. Незаконченный предмет при этом приходит в негодность. Так, во время наших тестов на принтере Ultimaker иногда происходили задержки загрузки материала. Чтобы временно остановить подачу материала, принтер немного оттягивал пластиковую нить назад.

Уже разогретый пластик при новой подаче задерживался перед экструдером и вызывал затор. В этом случае необходимо сначала вытянуть сверху из экструдера весь материал. Горячее сопло следует чистить осторожно, используя две скрученные жилы медного кабеля. Устранив затор, попытайтесь выяснить причину ошибки печати на сайте производителя. Затем исправьте ее (например, оптимизировав настройки печати перед сохранением файла «.gcode») и запустите новую попытку.

8 Окончательная обработка предмета


Когда процесс печати завершен, осторожно снимите готовый предмет, начиная с краев. При необходимости используйте тонкий шпатель. Обломите выступающие края, поддерживающие элементы и свисающие нити. Мелким напильником или шлифовальной шкуркой удалите ненужные остатки материала. Предмет можно покрасить обычными лаками или красками, в некоторых случаях поможет грунтовка для пластика. Лучше всего сначала проверить совместимость материалов на старых, неудачно напечатанных предметах.

ФОТО: Creative Tools/Flickr.com

3D-принтер - это устройство, которое позволяет создавать самые настоящие объекты, причем из самых разных материалов. Крючок для полотенца, компрессор для газовой турбины, чехол для смартфона – все это можно напечатать.

В данной статье мы рассмотрим самый распространённый тип 3D-принтеров, который работает по технологии FDM (метод послойного наплавления)

Из чего состоит 3D-принтер

3D-принтер состоит из корпуса (1) , закрепленных на нем направляющих (2) , по которым перемещается печатающая головка (3) с помощью шаговых двигателей (4) , рабочего стола (5) , на котором выращивается изделие; и всё это управляется электроникой (6) .

Чем печатает 3D-принтер

Расходные материалы (филаменты) для 3D-принтеров представляют из себя пластиковые нити, намотанные на катушки. Расходные материалы бывают различных типов и свойств. О всех типах материалов можно почитать в энциклопедии 3Dtoday.

Килограмм самого дешевого пластика можно купить за какие-то 500 руб., хотя более интересные варианты (например, имитаторы древесины или песчаника с наполнителями из настоящей древесины или камня) уже могут обойтись в несколько раз дороже.


Как работает 3D-принтер

Нить (филамент) (1) поступает в печатающую головку (Экструдер) (2) , в которой разогревается до жидкого состояния и выдавливается через сопло экструдера. Шаговые двигатели с помощью зубчатых ремней приводят в движение Экструдер (2) , который перемещается по направляющим (3) и наносит пластик на платформу (4) слой за слоем. Снизу в вверх. В итоге ваше изделие (5) растёт слой за слоем.


Как запрограммировать 3D-принтер на печать

Для начала работы (печати) на 3D-принтере, будущий предмет необходимо нарисовать, причем во всех трех измерениях. Делается это с помощью специальных программ, называемых CAD-редакторами или САПР («Системами автоматизированного проектирования»). При этом рисовать модели самому совершенно необязательно – готовые варианты всевозможных крючков, чехлов или даже квадрокоптеров можно просто скачать с различных интернет-сайтов. В крайнем случае, если душа к проектированию не лежит, а необходимой модели в интернете нет, всегда можно заказать ее у профессионалов.


Когда дело доходит до 3D-печати, такие модели подвергаются «слайсингу», то есть разбиваются на отдельные слои с помощью специальных программ, так и называемых – слайсеры. Представьте, что вы хотите напечатать вазу: первым делом вазу необходимо условно нарезать на тонкие-тонкие слои, а каждый из них опять-таки условно сфотографировать. Стопку полученных снимков можно передать принтеру, и он сделает копию каждой картинки, одну поверх другой, пока слой за слоем не воссоздаст оригинальную вазу. Вот только «рисуют» принтеры по-разному и разными материалами.


Слайсер формирует специальную программу для 3D-принтера. В этой программе принтеру рассказывается, как нужно печатать модель - куда двигаться экструдеру, с какой скоростью выдавливать пластик, какая толщина слоев будет у модели и др параметры. Вся программа для принтера сохраняется в файл под названием g-code. Дальше через флеш карту или USB провод программа загружается в 3D-принтер и запускается печать.
Пруток подается в печатающую головку, где плавится и выдавливается через тонкое сопло. Головка передвигается в двух плоскостях, вырисовывая нитью целый слой – один из срезов того самого «яблока». Закончив один слой, принтер приподнимает головку или опускает платформу, а затем начинает печатать новый слой поверх только что нанесенного. Так, слой за слоем, срез за срезом, выращивается копия оригинального предмета.


Теперь должно быть понятным происхождение термина «аддитивные технологии». Большинство цифровых производственных методов основываются на удалении лишнего материала. Например, то же самое яблоко можно выточить, высверлить и выпилить из болванки. Такие технологии называются субтрактивными (от англ. «subtract» – «отнимать»). В 3D-печати все с точностью до наоборот: объект выстраивается крупинка за крупинкой, слой за слоем, с нуля. Отсюда и термин «аддитивный процесс» (от англ. «add» – «добавлять»).


Как мы уже говорили, 3D-принтеров великое множество и устроены они по-разному. Особо сложные промышленные машины, спекающие слои из мелких металлических порошков с помощью высокоточных лазеров, могут стоить сотни тысяч долларов. А вот настольные варианты, печатающие пластиковой нитью, вполне по карману обычному любителю: приличный конструктор вполне можно найти за 20 000 руб. даже в текущий кризисный период, а полностью собранные, отлаженные машины с массой дополнительных функций вроде подогрева рабочей камеры, сенсорного дисплея и автоматической калибровки редко стоят более 200 000 руб. Такие принтеры используют технологию FDM (Fused Deposition Modeling) или «Моделирование послойным наплавлением»

Насколько функциональны печатаемые изделия?

Скажем так: все зависит от качества процесса и используемого пластика. На домашнем 3D-принтере вполне реально печатать рабочие шестеренки для самодельных роботов или пластиковые корпуса для электронных гаджетов. Матерым инженерам-любителям даже доступны прочные пластиковые композиты с углеволоконными добавками. Само собой, сувениры, игрушки или новая ручка для сковородки не составят никаких проблем. Самое же замечательное то, что у вас появиться возможность создавать уникальные изделия или ремонтировать вещи, давно снятые с производства. Себестоимость одной детали, как правило, будет выше, чем у ширпотреба, но и здесь бывают исключения. Хотя бы те же защитные кожухи для смартфона: 50-граммовый 3D-печатный чехол из ABS-пластика хорошего качества обойдется примерно в 50 рублей, плюс небольшие затраты на электричество, а аналогичный кейс с витрины будет стоить в 5-10 раз дороже.


Производство настольных 3D-принтеров уже вовсю налажено в России, причем отечественные аналоги ничем не хуже западных вариантов, и это не пустые слова. Полного замещения комплектующих пока никому из отечественных производителей добиться не удалось, но готовые продукты дешевле западных конкурентов и не уступают им по характеристикам или качеству печати, а за сервисным обслуживанием не придется далеко бегать. Помимо FDM-принтеров существуют и машины, работающие с жидкими смолами, отверждаемыми светом, пластиковыми и металлическими порошками, спекаемыми лазерами, и даже устройства, изготавливающие высокоточные трехмерные модели из листов обычной бумаги, но это уже отдельная история.

Трехмерная печать становится все популярнее. Как работает 3D-принтер, какие материалы используются при печати моделей, а также некоторые практические советы рассмотрим в нашей статье.

Как работает 3D-принтер?

Классический 3D-принтер с технологией FDM

Начнем с технологии печати. В наши дни 3D-принтеров очень много, а соответственно, и способов создания моделей с их помощью — тоже не перечесть. Но в принципе, все принтеры в основе имеют одну из трех различных технологий.

Во-первых, существует так называемая стереолитография (SL или SLA). Внутри принтера помещается ванна, в которой находится жидкий фотополимер. Фотополимеры – это пластмассы или смолы, которые затвердевают при воздействии света. Принтеры обычно работают с акриловой, эпоксидной или виниловой смолой. По поверхности смолы движется лазерный луч, и там, где он ее касается, смола отвердевает. В фотополимерном бассейне есть платформа, которая после каждого затвердевания опускается немного вниз (глубже в ванну). Таким образом, объект печатается по рядам, как текст в обычном принтере. После полного отвердения модели она отличается высокой прочностью и химической стойкостью. Преимуществом этого метода является точность передачи: даже мелкие микрометрические структуры принтер может напечатать очень чисто. К сожалению, стереолитографические принтеры в настоящее время очень дороги.

Вторая технология работы 3D-принтера — селективное лазерное спекание (SLS). Чтобы понять, как это работает, представьте себе вертикальную трубу, в которой находится движущаяся платформа. В начале печати платформа находится наверху. Пластик, формовочный песок с пластмассовым покрытием, металлический или керамический порошок распределяются по платформе тонким слоем при помощи валика. Затем по платформе начинает перемещаться лазерный луч, нагревая определенные точки в порошке, так что они соединяются и образуют первую плоскость объекта. После этого платформа движется немного вниз, и процесс начинается снова. Таким образом, объект снова строится по слоям.

Третий способ — классический. Он называется моделированием методом наплавления (FDM). В этом процессе каждый новый слой изделия формируется из жидкого пластика, который пропускается через экструдер (программируемое устройство, придающее ему определенную форму) и после этого немедленно отверждается лазером. Затем отвержденный слой смещается вниз, экструдер придает форму новому слою, и он наплавляется сверху на предыдущий, и так далее. Такие принтеры относительно недороги и могут быть собраны самостоятельно с применением некоторых ноу-хау. Здесь точность печати получается хуже по сравнению со стереолитографией, однако для любителей это самая подходящая процедура 3D-печати.

Как создаются модели для печати?

Сначала создается 3D-модель объекта при помощи программы CAD и сохраняется в специальном формате STL. Затем файл STL загружается в программу резки для принтера, например, Cura или Slic3r. Программа резки позволяет задавать физические свойства модели, такие как плотность заполнения или использование опорных конструкций.

Программа преобразует 3D-модель в G-код. Он содержит инструкции для экструдера, по которым тот должен придавать форму каждому слою модели. Код загружается в принтер, устройство запускается, и начинается печать.

Какие материалы используются в 3D-печати?

3D-печать осуществляется при помощи различных видов пластика. Он выпускается в форме нитей, намотанных на большие катушки. Нить заряжается в принтер, который втягивает и расплавляет ее для того, чтобы пластик стал жидким, и ему можно было придавать форму.

Чаще всего в принтерах используется полилактид (PLA). Это пластик, который получают из возобновляемых источников — например, из кукурузного крахмала. Он водоотталкивающий, а также безопасный для изготовления емкостей для пищевых продуктов. Кроме того, он огнестойкий и устойчивый против УФ-излучения. Самое большое преимущество — у него при печати нет неприятного запаха.


Печать при помощи полилактида (PLA)

Очень часто используется сополимер акрилонитрил-бутадиен-стирол (ABS). Этот пластик является одной из наиболее широко используемых пластмасс в мире. Он особенно устойчив к маслам, жирам и высоким температурам. При печати он также не дает запаха. Модели из него получаются матовыми.

Еще один материал для 3D-печати — поливиниловый спирт (PVAL или PVOH). Особенностью этого пластика является его водорастворимость. Благодаря этому он удобен для печати несущих конструкций внутри модели, на которые затем наплавляется водостойкий пластик, тот же PLA. После завершения модели несущие конструкции внутри растворяются.

Для печати несущих конструкций в моделях из пластика ABS часто используется ударопрочный полистирол (HIPS). Этот пластик обладает высокой ударной вязкостью и твердостью.

К эксклюзивным методам относится печать соединениями PLA, то есть, при помощи смеси пластика PLA и частиц других веществ. Таким образом создаются модели, к примеру, из дерева или меди.

Редко, но все-таки используется поликарбонат (PC). У этого пластика очень высокая температура плавления — от 270 ° C до 300 ° C. Кроме того, этот пластик обладает высокой ударопрочностью и термостойкостью.

Для печати деталей механизмов, к примеру, зубчатых колес или винтов, которые должны выдерживать большое усилие и не ломаться, используется нейлон.

Также существует ряд пластиков с маркировкой «elastic» или «flex». Они могут быть изготовлены из разных веществ, но, как правило, в качестве основного ингредиента используются термопластичные эластомеры на основе уретана. Их объединяет одно — гибкость.

Посуда и контейнеры для пищевых продуктов печатаются с использованием безопасных нетоксичных пластика. Это либо уже упомянутый PLA, либо полипропилен (PP), который, в отличие от первого, является гибким. Существует также безопасное для пищевых продуктов сочетание PLA и ABS — PETG, которое более устойчиво к атмосферным воздействиям.

Инновационные технологии 3D в недавнем прошлом ставшие сенсацией, в настоящее время прочно вошли в нашу повседневную жизнь. 3D-фильмы, специальные очки и все прочее уже не считается чем-то этаким и диковинным. Объемное изображение захватывает внимание, обволакивает и заставляет почувствовать зрителя как-бы внутри него - это, безусловно, более интересно, чем привычный формат. Не стоят на месте и производители современных печатных устройств. Яркий тому пример – 3D-принтеры. Что это такое и как работает 3D-принтер, расскажем в этой статье.

Главная задача эти устройств – печать трехмерных моделей из различных материалов: бумаги, пластика или даже легких металлических сплавов, слои которых накладываются один на другой и склеиваются. Толщина одного слоя около 0,1 мм. По техническим характеристикам печати 3D-принтеры можно разделить на лазерные и струйные, как обычные принтеры.

Лазерная 3D-печать

Лазерная технология основана на стереолитографии (SLA), которая позволяет печатать трехмерные модели на основе CAD-чертежей. Принцип следующий – водянистый фотополимер просвечивается ультрафиолетовым лучом, тончайший слой практически мгновенно застывает. Специальная компьютерная программа разделяет трехмерную модель объекта на сотни тысяч таких слоев, и они ложатся один на другой, склеиваются особым клеем, застывают, и снова следующий слой по заданным параметрам. Так слой за слоем и вырастает готовая модель, в конце процесса она очищается от лишнего полимера, промывается и высушивается. Лазерная технология 3D-печати позволяет воспроизводить трехмерные модели высотой до 75 см.

Струйная 3D-печать

Струйная технология 3D-печати аналогична принципу работы обычного струйного принтера. Вместо краски используют специальный пластик, который сначала нагревается и плавится, затем наносится на основу микроскопическим слоем, и очень быстро застывает. Этот метод печати обычно называется методом лазерного спекания (SLS), и наряду с более выгодной по стоимости по сравнению с SLA-технологией, плюсом является возможность делать трехмерные модели из металла. Принцип работы 3D-принтера на основе технологии спекания дает возможность использовать для основы в качестве порошка различные полимерные материалы, а также керамику или стекло. Еще одно преимущество такого метода – некоторые модели принтеров позволяют в используемый клей добавлять краску, что позволяет создавать разноцветные модели.

Инновации и постоянное развитие 3D-печати создает дополнительные возможности не только для дизайнеров, но и для различных областей медицины, промышленного производства и многих других. Ведь с помощью такого устройства любую идею можно воплотить в реальную модель или прототип.